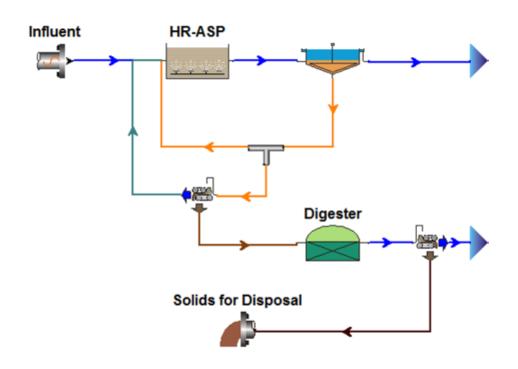
Advanced Nitrogen Removal Configuration with MBR Application for Water Reuse

Peter L. Dold, Weiwei Du

EnviroSim Associates Ltd.

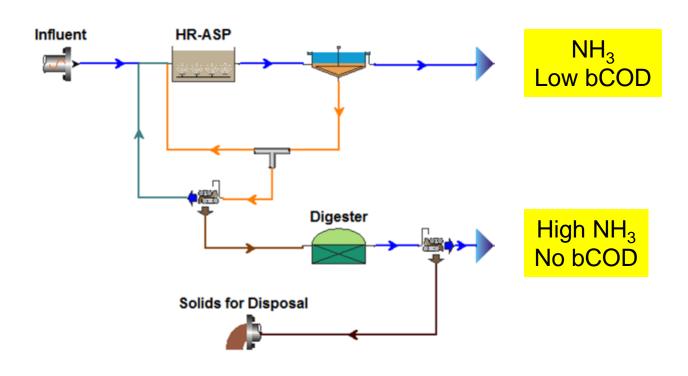


Outline

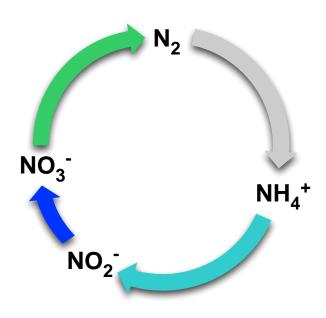
- Seeking a sustainable N removal / water-reuse system
 - COD removal energy recovery
 - Efficient N removal (without C addition or depending on influent C)
- Advanced nitrogen removal
 - Nitrite shunt & Deammonification
 - NOB washout
- High rate ASP Deammonification MBR system
 - Sidestream + mainstream nitritation-deammonification
 - Sidestream nitritation + mainstream deammonification

Emphasis on sustainability, energy neutrality

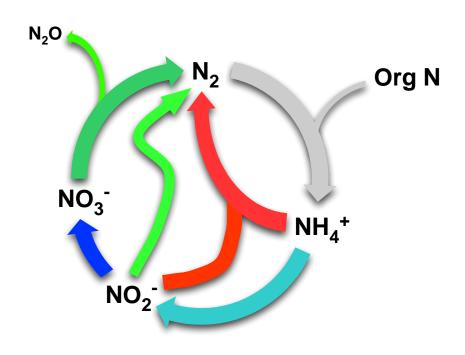
COD removal


HR-ASP system

Impact of SRT


SRT (Day)	COD oxidized in HR-ASP (kg/d)	COD in overflow (kg/d)	COD sent to digester (kg/d)	Methane production (m³/kg influent COD)	% (COD CH4/ influent COD)
0.50	1,215	2,087	8,699	0.192	49.4%
0.75	2,050	1,439	8,512	0.176	45.3%
1.00	3,030	1,186	7,783	0.143	36.9%

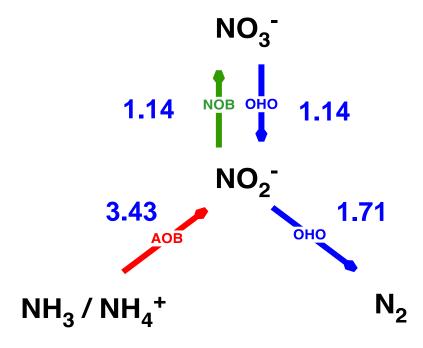
SRT (Day)	HR-ASP overflow (% of TN)	Stream to digester (% o┪┪)
0.50	67%	32%
0.75	62%	38%
1.00	57%	41%


Emphasis on sustainability, energy neutrality

N Removal

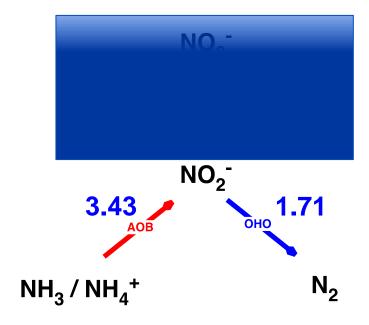
N Removal

Nitrogen Removal

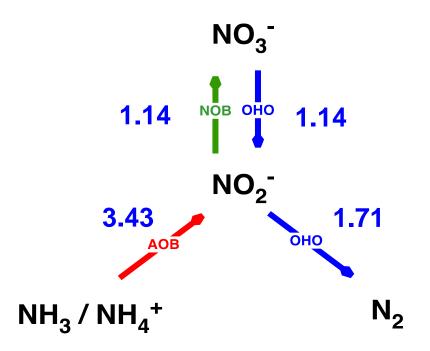

- Shortcut N removal (Nitrite shunt)
 - Reduce oxygen demand
 - Reduce C requirements

Deammonification

- Small oxygen demand
- No C requirement


Nitrification and Denitrification

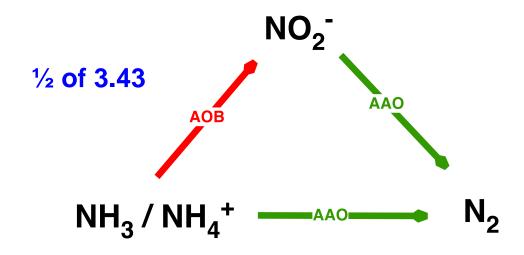
Oxygen requirements


Nitrification and Denitrfication

Nitrite Shunt

Nitrification and Denitrfication

Nitrite shunt – no benefit if influent C available


Full nite-denite:

Spend	4.57
Credit	2.86
Net cost	1.71

Nitrite shunt:

Spend	3.43
Credit	1.71
Net cost	1.71

Deammonification

Presented as a kinetic control issue

$$\frac{1}{f_{A}.m_{AOB} - b_{AOB}} < SRT < \frac{1}{f_{A}.m_{NOB} - b_{NOB}}$$

Presented as a kinetic control issue

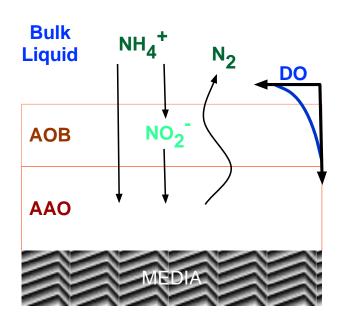
$$\frac{1}{f_{A}.m_{AOB} - b_{AOB}} < SRT < \frac{1}{f_{A}.m_{NOB} - b_{NOB}}$$

$$\mu_{AOB} = f(NH_3, DO, T, ...)$$
 $\mu_{AOB} = f(NO_2, DO, T, ...)$

- + FA inhibition
- + FNA inhibition

- Sidestream treatment (e.g. centrate)
 - High NH₃, high T
 - Control DO and SRT/HRT
 - NOB washout
 - Integrate deammonification
 - On/off aeration

Mainstream treatment


- Some factors not available
 - FA, FNA inhibition, lower T

Attached growth biofilm

- Nitritation
- Deammonification

Findings / possible benefits

- Easy to implement sidestream AAO
- Seed mainstream from sidestream
- Online control simple
- IFAS-type configurations favoured
- Biomass retention crucial
 - MBR

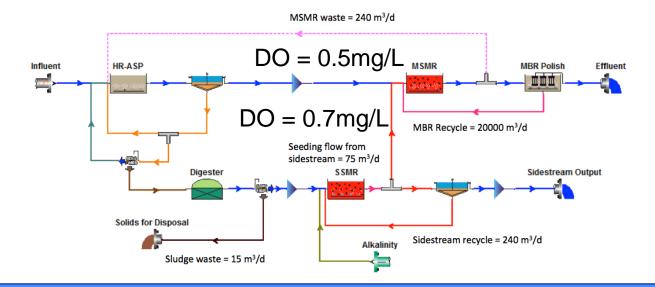
Basis of Efficient C and N Removal Schemes

- High Rate Activated Sludge
 - COD removal energy recovery
- Sidestream Media Bioreactors
 - Handling dewatered digestate
- Mainstream Media Bioreactors Deammonification
 - Seeding of AOB and/or AAO from sidestream
- Membrane Bioreactor
 - Polishing
 - Biomass retention Effluent suitable for reuse

Basic Scheme for Deammonification – MBR Configuration

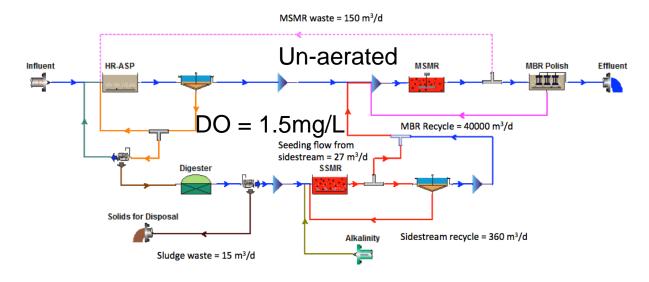
Deammonification – MBR configuration

HR-ASP, Media Reactors, and MBR

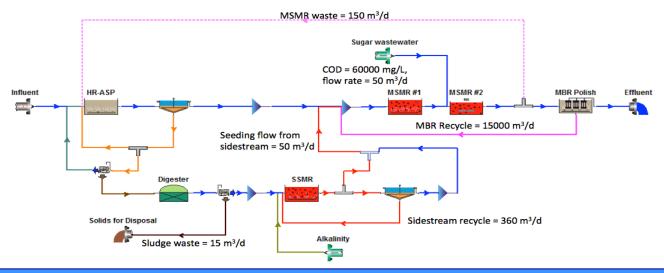

 Compact, simple control strategy, energy efficient, and low N and solids-free effluent for water reuse.

Influent flow rate 24,000m³/d, COD 500mg/L, TKN 40mgN/L.

Nitrogen Removal (1)


Deammonification in mainstream and sidestream

- MSMR and SSMR are two single-stage deammonification reactors
- AAO seeding from SSMR to MSMR


Nitrogen Removal (2a)

- Sidestream nitritation and mainstream deammonification
 - NOB washout in SSMR (DO = 1.5, SRT = 8 days)
 - Un-aerated MSMR favours the growth of AAOs

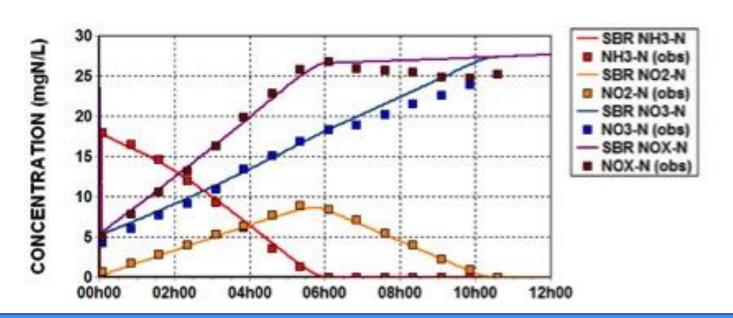
Nitrogen Removal (2b)

- SSMR nitritation; MSMR deammonification & denitrification
 - NOB washout in SSMR (DO = 2.5, SRT = 6.5 days)
 - Deammonification and nitrification in MSMR #1 (DO = 1)
 - Denitrification in MSMR #2 (un-aerated)

Conclusions

Energy-efficient advanced N and solids removal system

- HR-ASP to capture a large portion of influent COD
- Maximized biogas generation in anaerobic digestion
- Deammonification for N removal
- MBR ensures a solids-free effluent water reuse


Deammonification – MBR configuration

- TN in the effluent ~ 10 mgN/L (mainly NO₂)
- Modified deammonification MBR configuration
 - TN in the effluent < 5 mgN/L (mainly NO₃)

Getting rid of NOBs

Mainstream treatment

Kinetic and stoichiometric control

