DSD International Conference 2014 Hong Kong

Static Vs Dynamic Odour Control A Better & More Cost Effective Solution

Stuart Lee and Raymond Porter Odotech

> 3333 Queen Mary Montréal, Qc, Canada +1 514 340 5250

slee@odotech.com

Chesapeake-Elizabeth WwTP

- 24 MGD US (91 MLD)
- Virginia Beach
- USA

- Physical-Chemical-Biological Secondary treatment plant
- Without Primary Clarification
- Partially covered ASP + OCU
- Peroxide Regenerated Iron Sulfide Odour Control at Headworks
- OdoWatch real-time odour monitoring & modelling

Typical Chemicals Responsible for Odours

- **Sulphides** (H₂S, DMS, DMDS, CS₂, Methanethiol)
- Volatile Fatty Acids (Acetic Acid, Butyric Acid, Propionic Acid)
- Nitrogen Compounds (Ammonia, Trimethylamine)
- **Plus** <u>Many Others</u> depends on waste stream and the process used!

Unfortunately No single tracer gas for estimating off site odour impacts (Odour is a blend of multiple components... many at the detection limits of existing methods)

Must rely on olfactometry (D/T or O.U./m³) and modelling

Odo^tech

Olfactometry Definitions

- Odour Unit: by definition, 1 o.u./m³ when odour is perceived by 50% of a human panel (1 o.u./m³ corresponds to the detection threshold) Also Dilution to Threshold (D/T)
- Odour Concentration (c) (number of odour units): Number of dilutions (with odourless air) of the sample required to obtain 1 o.u./m³
- Example: if c = 10,000 o.u./m³ means it takes 10 thousand dilutions to reach the detection threshold for this sample

The Costs of Odour Problems

Forced Shutdowns	Revoked or Refused Permits	Fines and Penalties
Lawsuits and Lawyers	Massive Investment in Technology Upgrades	Daily Operation & Consumables Costs
Difficult Public Relations with Neighbours		

Odour Dispersion Modelling

- Defines relationship between the emission source and receptors
- Compliance with nuisance standards depend on whether the odour levels at the receptor have been reduced with respect to their Frequency, Intensity, Duration, Offensiveness and Location (FIDOL, also FIDOR)

Purpose of Dispersion Modelling

AERMOD v CALPUFF Modelling

Odoleci

Static Modelling

- Sources sampled at a single campaign
- Olfactometric results define the source
- Modelling with historical metrological data (1 to 5 years)
- The result pairs "worst case" emissions with "worst case" dispersion
- Compliance = some "acceptable" level of exceedance as a percentile of hours
- Static modelling only option on new or proposed sources, as the does not exist

Static modelling is `Odour Dispersion Modelling Assessment' or 'Odour Impact Study'

Dynamic Modelling

- Pairs real time monitored odour emissions and measured real-time meteorology
- Emissions and dispersion no longer independent parameters
- Odour control measures can be applied dynamically, not worst case condition
- Dynamic modelling preferred option on large open emission source
- Also applicable to control/optimisation of OCU's

Odour Concentration & Emission Rates

- <u>Static Modelling:</u>
 - Emission rate limited to the odour concentration obtained during the sampling campaign and olfactometry analysis
- Dynamic Modelling:
 - Emission rate measured/calculated continuously
 - Updated for at each model iteration
 - Considers fluctuation from unsteady state processes and/or weather variations

Source Parameters

- Static Modelling:
 - Values represent worst case release scenario at time of sampling
- Dynamic Modelling:
 - Exhaust gas temperature and exit velocity considerd for each model iteration
 - Adjusts for operational variable (e.g. influent wastewater quality)
 - Include open/closed door conditions (e.g. Sludge Dewatering Building)

Meteorological Data

- Static Modelling:
 - Historical data from the nearest airport.
 - Meteorological data is an independent variable from the odour emissions
 - The static modelling often predicts maximum odour impact on
 - calm winter morning
 - and maximum odour emissions on warm summer days.
 - Data is often not local (distance from data source to site)
 - Weather data doesn't reflect micro scale changes at site or surroundings

Dynamic Modelling:

- On-site weather tower data
- Linked to real-time odour monitoring
- Calculates real-time emission rates

Chesapeake-Elizabeth WwTP

Meteorological Data	Static Modelling	Dynamic Modelling
Period	Historical 1 to 5 years	Real-time and historical data
Frequency	1 hour average	As low as 4 minute intervals
Representation	Regional scale	Local scale next to the source
Location	Nearest airport	On-site
Upper air	Two (2) per day usually remote location far from the site (50+km)	Assumes unlimited surface mixing layer

Topography &	Taken in consideration	Taken in consideration
Receptor Array		

Complex Changing	Not considered	Taken in consideration
Local Patterns		

Wind Rose Variations (2013)

Norfolk International Airport

On-site Station at CETP

'wind blowing from'

Utilisation Source Characteristics

Utilizations	Static Modelling	Dynamic Modelling
Alert upon threshold exceedance	Not possible	Visual, sound or email
Proactive	Not possible	Can trigger measures to mitigate odour emissions
Compliance determination	For new sources and existing sources	For existing sources
Review of specific odour event	No	History of all archived plumes. Animation (movies) of odour events in the last 24 hours
Current compliance assessment	No	Yes
Complaint validation	Yes but limited to average exposure	Yes on a case by case event
Automated report	No	Yes on demand
Process optimization	Limited to average results	Process optimization with control loop adjusted every model iteration

Static Modelling; Maximum Impact

Dynamic Modelling; Maximum Impact

Odotech

Static Modelling; 98%ile Impact

Odo^tech

Dynamic Modelling; 98%ile Impact

Odotech

Static vs. Dynamic odour modelling © Odotech Inc. 2014

24

Dynamic Odour Monitoring Value

Minimize odour management costs (CAPEX & OPEX)

Manage odour events in real time based on a proactive approach (reduce of off-site impacts)

Continuous improvement possible with associated off-site impact reduction & tractability

Rational evaluation of the project and site based on existing and anticipated constraints

Establish a trust based relationship with stakeholders (elected officials, neighbours, regulatory agencies)

Real-time odour monitoring & modelling - OdoWatch

Economic Consequences

(Chesapeake-Elizabeth WwTP)

- Phase 1 Partially Cover Aeration Basins
 - Implemented + using Odour Control Unit
- Phase 2 (Proposed)
 - Completely Cover Aeration Basins
 - Not implemented due to high capital cost
- Phase 2 (Implemented)
 - Hydrogen Peroxide to control odour emissions
 - OdoWatch real-time continuous monitoring & modelling
 - +10% reduction in chemicals with OdoWatch

Thank you

• OdoWatch a real-time odour monitoring & modelling system for:

- Continuous odour emission measurement
- Real time, 24/7 atmospheric dispersion modelling
- Advanced data analysis
- Threshold alerts (alarm)
- An operational tool for managing odour impact

