Chemical Determination of Odorants in Air from Sewage Treatment Works

Zongwei Cai, Ph.D. Chair Professor of Chemistry Dioxin Analysis Laboratory Hong Kong Baptist University

> DSD International Conference 2014 Nov. 12, 2014, Hong Kong

Background of odor study

- Public awareness and concern on odorous emissions from waste treatment facilities.
- Odorous emissions contain a large volatile chemicals with different toxicities each, which may cause harmful health effects.
- Olfactometry test has been a standard method for couple decades. Odor concentration were determine by nose sensory method (EN13725).
- According to GB14554-93, six levels are defined: 1. no feeling; 2. little feeling, but no stimulation; 3. feeling obviously, but no stimulation; 4. stimulation; 5. stimulation strongly; 6. can not endure.

Instrumental Analysis

For individual compound

- Hydrogen sulphide is absorbed and determined colorimetrically by the methylene blue method.
- Formaldehyde and acetaldehyde absorbed and reacted with HCl/2.4-dintrophenylhydrazine (DNPH); derivatives are determined by HPLC-UV.

• For mixture

• GC-MS is commonly used, but sensitivity is often no enough for all odor compounds with the direct injection method.

Sorbent Tube - Thermal Desorption Unit (TDU) coupled with GC-MS

DEMP11/05, DSD

Sorbent Tube for On-site Sampling

• TDU Sorbent tube with resins (Tenax, Graphitized carbon, Carboxen, XAD) was linked to a pump. Gas following rate was set at 30 ml/min for 40 min and 60 min, with the volumes of total gas through sorbent tube of 1.2 and 1.8 liter, respectively.

Nutch 2702 sampler

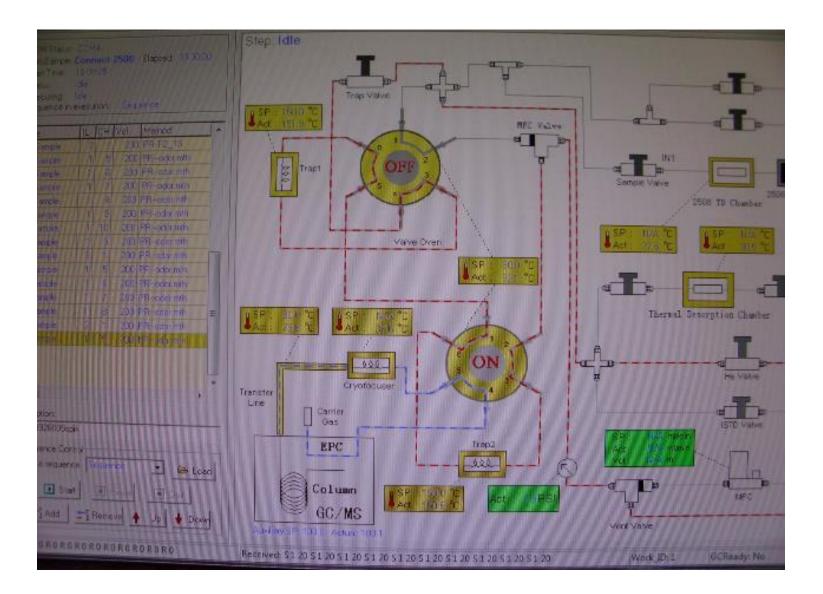
TDU tube, Restek

- Tube was connected to TDU-GC-MS system set up in Dioxin Laboratory, Hong Kong Baptist University.
- Liquid nitrogen was used to condense odorants from absorbed tube followed by thermal desorption. Concentrated odorous were directly injected into GC column.

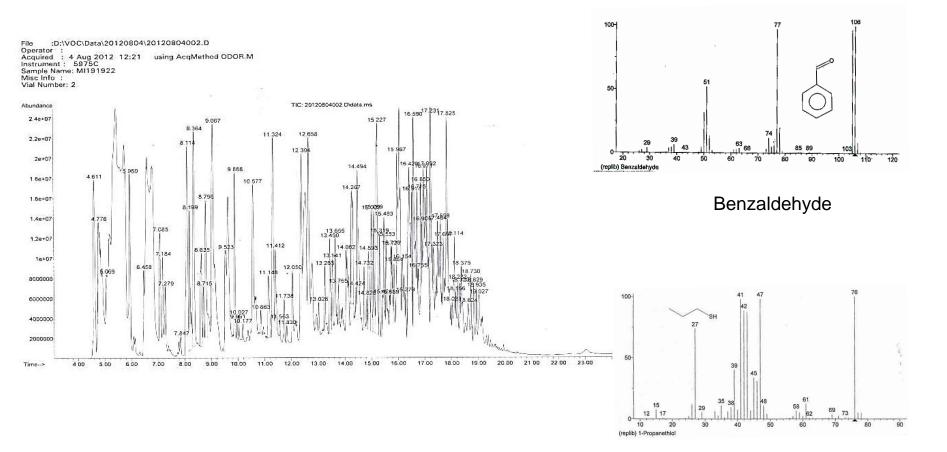
Ambient air sampling

Sampling at Shatin WWTW influent window

Inlet or outlet sampling in Wastewater Treatment Work (WWTW)


Inlet or outlet sampling in Wastewater Treatment Work (WWTW)

TDU-GC-MS (Nutch 2502 TDU, Agilent 7890A GC - 5975 MSD)



Odorous testing team, Dioxin Analysis Lab., HKBU

Thermo-desorption program

A typical GC-MS total ion chromatogram and mass spectra

Propanethiol

Method development and validation

- Identification based on criteria of chromatographic retention time and characteristic ions (e.g., molecular ion and fragmentation ions).
- Standard EI-MS spectrum library searching used for confirmation.
- Library searching also provides the analysis of "unknown" (valuable for emerging testing).
- Authentic standards of 56 odorants and TO-14 Standard mixture available for confirmation.
- A total 74 compounds were monitored.
- The "odorous chemicals" classified in four groups: sulfurcompounds, nitrogen-compounds, volatile fatty acids and others (mainly aldehydes/ketones).

74 odor compounds and their specific ions

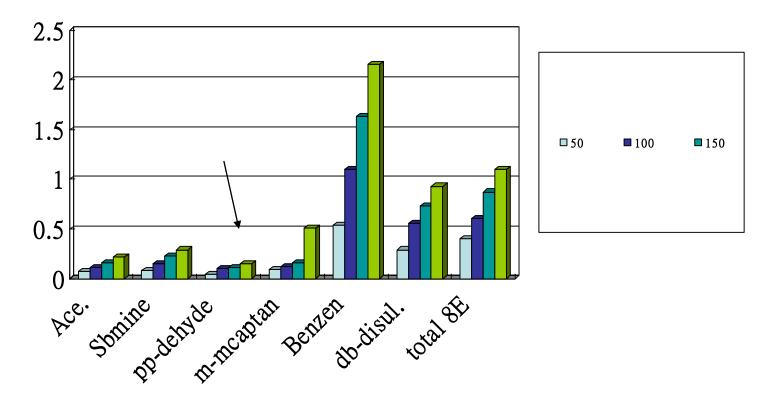
Chemicals	lon mass	Chemicals	lon mass
• n-Butylamine	30	Crotonaldehyde Solu	tion 39, 41
• sec-Butylamine	44	• n-Butyraldehyde	44, 43
• tert-Butylamine	58, 41	 Isovaleraldehyde 	44, 43
Isobutylamine	30, 73	 Valeraldehyde 	44, 58
 Diethylamine 	58, 30	• Hexaldehyde	44, 56
 Diisopropylamine 	44, 86	 Benzaldehyde 	106, 105
 Dipropylamine 	72, 32	• o-Tolualdehyde	120,119
• Dimethylamine (in wate	er) 44, 45	• m-Tolualdehyde	120 ,119
• Ethylamine (anhydrous) 30, 28	• p-Tolualdehyde	120,119
• n-Propylamine	30	• 2,5-Dimethylbenzald	ehyde 134, 133
 Trimethylamine 	58, 59	• Acetone	43, 58
 Triethylamine 	86, 58	• Acetic acid	43, 45
 Formaldehyde 	30, 29,	 Propionic acid 	74, 45
 Acetaldehyde 	29, 44	• Butyric acid	69, 73
 Propionaldehyde 	58, 29	 Isobutyric acid 	60, 73

• 2-Methylbutyric acid 43, 73
• Valeric acid 60, 73
• Isovaleric acid 60, 43
• 2-Methylvaleric acid 74, 43
• 3-Methylvaleric acid 60, 41
• 4-Methylvaleric acid 57, 74
• Hexanoic acid 60, 73
• Heptanoic acid 60, 73
• 2-Ethylhexanoic acid 73, 88
• Octanoic acid 60, 73
• Nonanoic acid 60, 73
• Indole 117, 90
• Carbon disulfide 76, 44
• Dimethyl disulfide 94, 79
• Diethyl sulfide 75, 90
• Methyl sulfide (dimethyl sulfide) 62, 47
• Skatole 130, 131
• Ammonia 17, 16
• Methylamine 30, 31
• Isopropylamine 44, 42
• iso-Butyraldehyde 43, 42
• Ethyl mercaptan 62, 29
• Ethyl methyl sulfide 61, 76
• Carbonyl sulfide 60, 32

•	3-Methylindole	130, 131
•	Thiophene	84, 58
•	Tetrahydrothiophene	e 60, 88
•	3-Methyl thiophene	97, 98
•	Methyl mercaptan	47,48
•	n-Propyl mercaptan	76, 43
•	Isopropyl mercaptar	n 43, 76
•	n-Butyl mercaptan	41, 56
•	Isobutyl mercaptan	41, 43
•	Hydrogen sulfide	34, 32
•	Dimethyl disulfide	94, 79
•	Diethyl Disulfide	122, 66
•	Sulfur dioxide	64, 48
•	2-Ethylthiophene	97, 112
•	2,5 - Dimethylthiopl	hene 111,112
•	Benzene	78, 77
•	Toluene	91, 106
•	o-xylene	91, 106
•	m-xylene	91, 106
•	p-xylene	91, 106
•	Tetrachloroethylene	166,164

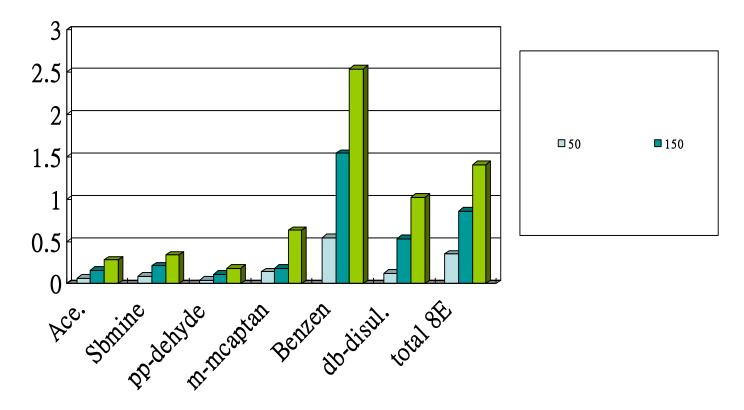
• hyl-2-propanethiol (tert-Butyl mercaptan) 57, 41, 90

continue


Calculation curves from TO-14 standards & 56 gas mixture standards

TO-14	А	В	С	D	Е	F	G
50 ppbv	0.071	0.082	0.042	0.09	0.54	0.29	401.37
100 ppbv	0.11	0.15	0.098	0.12	1.10	0.56	618.55
150 ppbv	0.16	0.23	0.11	0.16	1.63	0.73	872.32
200 ppbv	0.22	0.29	0.15	0.51	2.16	0.93	1102.64
56 Species Mix							
50 ppbv	0.066	0.085	0.039	0.014	0.54	0.12	345.10
150 ppbv	0.15	0.21	0.11	0.15	1.54	0.53	864.11
200 ppbv	0.28	0.34	0.18	0.63	2.54	1.02	1403.22

A: Acetone, B: Sec-butylamine, C: Propionaldehyde, D: Methyl mercaptan, E: Benzen F: Dibutyl disulfide, G: total intensity (all peaks integrated from chromatogram)


TO-14 standard for calculation curves

Standard calculation curve from TO-14 standard gas mixture at four different concentrations

56 gas standards for calculation curves

Standard calculation curve from 56 standard gas mixture at three different concentrations

Low background: percentage of TDU-GC-MS blank

TO-14 stand	lard n	56 sto	l mixtu	ure (ppbv)			
Conc.	50	100	150	200	50	150	200
Peak Signal	401	618	872	1102	345	864	1402
Blank (%)	3.1	2.0	1.4	1.1	3.6	1.4	0.88

Instrument blank was between 0.88% - 3.58%

TDU-GC-MS analysis

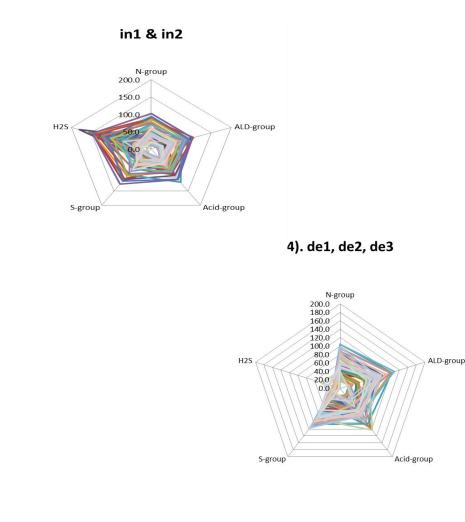
- Field blank (from sorbent tube and instrument): 1.5 6.2%.
- Duplicate test showed repeatability were good (Table 6).

Table 6. Duplicate odor components from sludge transfer site ofStonecutters Waste Water Treatment Works												
(basic on comparison with 50 species of gas standards)						ppbv			01/22/2013			
Stonecutters	1	2	3	4	5	6	7	8	9	1010	Total	
昂船洲	Acetone	SCO	PHCs	H2S	In Amines	Dehydes	Acids	Mercaptans	Disulfide	Sulfide		
Duplicate A	0.075	0.897	9.276	0.188	0.218	0.274	0.060	0.079	0.166	0.011	11.244	
Duplicate B	0.068	1.031	8.757	0.219	0.191	0.302	0.068	0.073	0.181	0.009	10.899	
Average	0.072	0.96	9.017	0.204	0.205	0.288	0.064	0.076	0.174	0.01	11.072	
(A-B)/Ave.(%)	9.8	13.9	5.8	15.2	13.2	9.7	12.5	7.9	8.6	20.0		3.1

Summary on Tube TDU-GC-MS method

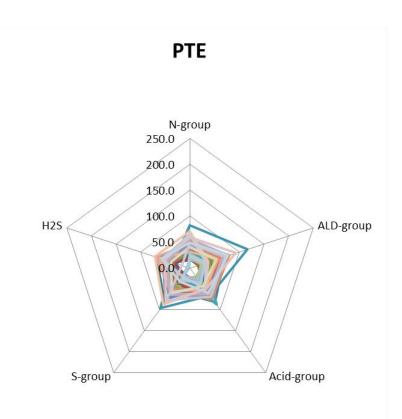
- Coverage of a wide range volatile and semi-volatile organic compounds (VOC).
- Suitable for odor determination from wastewater treatment facilities.
- LOD range were 0.2 0.5 ppbv for normal odor source points and deodorizing units.
- Relatively good selectivity, sensibility and precision according to Compendium Method TO-17 (USEPA) .
- Testing on more than 70 compounds from sludge transfer site, dewater workshop and waste water treatment facilities.

Method applications

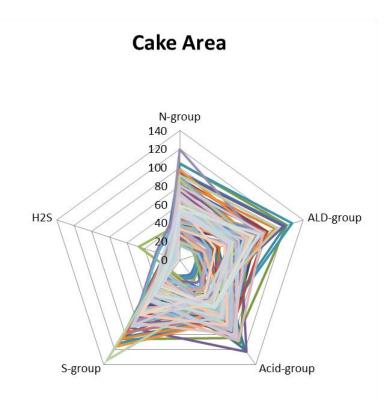

Sample nature	# of testing
Wastewater Treatment Work (WWTW)	
Before June 2012	80
June2012-June 2013	340
July2013 –Sept.2013	108
Method/Study	
H2S, SCO conversion test	51
VOC (acids, amine etc.)	51
Standard TO-14, VOC std	16
Laboratory air	18
Comparison with Oflactometry test (HKPC)	
	153
•Total sample No:	817

Stonecutters Waste Water Treatment Work with Olfactometry

A typical table report


		Stonecu	ters wa	iste water	I reatmen	WORK WI		an. 9, 2014
				DOU 1 #3 1		Gate #2 D	WH Sil A	mbient
	name list	LOD	Q-M/Z			air(WKTs)		air
	n-Butylamine	0.5	30	21.1	14.6	0.7	12.3	0.0
	sec-Butylamine tert-Butylamine	0.5	44	21.7	10.7	0.3	33.9	0.4
	Diethylamine	0.5	58, 41 58, 30	4.6 1.7	0.5	0.8	5.3 38.2	0.3
	Di isopropylamine	0.5	44, 86	11.0	1.5	1.1	40.9	0.4
	Dimethylamine	0.5	44, 45	52.9	11.2	0.9	15.7	0.0
7	Dipropylamine	0.5	72, 30	6.8	3.3	1.4	6.6	0.5
8	Ethylamine	0.5	44, 46	30.8	11.9	0.7	40.2	0.0
	Isobutylamine	0.5	30, 73	8.5	1.7	0.7	41.1	0.7
	Isopropylamine Propylamine	0.5	44, 42	1.5	1.2	1.5	5.5	0.4
	Tri ethylamine	0.5	30, 59 86, 58	31.0	1.2	1.1	7.0	0.7
	Trimethylamine	0.2	58, 59	5.1	1.2	2.2	5.3	0.0
14	Ammonia	0.5	17	0.0	0.0	0.0	0.0	0.0
	Indole	0.5	117,90	0.0	0.0	0.0	0.0	0.0
16	Skatole	0.2	130,131	27.0	10.3	1.0	5.1	0.5
	Methylamine	0.5	30, 31	10.1	. 6.3	2.1	11.7	0.9
	Formaldehyde Acetaldehyde	0.5	30, 29	3.6	1.5	1.1	30.7	0.4
	Propionaldehyde	0.5	29, 44 58, 29	11.9 6.8	5.9 8.5	2.4	8.9 5.3	0.3
	Crotonaldehyde	0.5	39, 41	40.6	21.2	0.8	34.3	0.3
22	n-Butyraldehyde	0.5	44, 43	22.7	10.3	0.5	41.2	0.7
	iso-Butylaldehyde	0.2	44, 45	62.7	31.9	0.8	31.0	1.2
	Benzaldehyde	0.5	106,105	10.7	8.7	0.4	48.2	1.5
25	Isovaleraldehyde	0.2	44, 45	20.6	11.2	0.7	41.1	0.0
26	Valeraldehyde o-Tolualdehyde	0.2	44, 58	26.6	19.2	0.2	2.2	1.2
	m,p-Tolualdehyde	0.5	120,119 120,119	19.2 14.7	14.7	0.0	41.2	0.9
	n-hexanaldehyde	0.2	120,119	1.2	0.9	1.1	7.0	0.5
30	2,5-Dimethylbenzaldehyde	0.5	134,133	0.9	0.5	0.7	30.7	0.7
	Acetone	0.5	43.58	0.5	0.9	0.0	8.9	1.2
	Benzene	0.5	78, 77	10.5	1.5	0.3	5.3	0.3
	Tetrachloroethylene	0.5	166,164	3.9	1.2	0.2	34.3	0.9
34	Toluene o-Xylene	0.5	91.92	2.9	0.3	0.1	41.2	0.0
	m-Xylene	0.5	91, 106 91, 107	1.7	1.9	0.2	31.0 48.2	1.2
	p-Xylene	0.5	91, 107	1.0	1.2	0.0	40.2	0.0
	Acetic ester	0.5	43.45	29.0	14.6	1.1	2.2	0.2
	Butanoic ester (Butyric ester)	0.2	60.73	33.1	14.7	0.7	41.2	0.9
	Heptanoic ester	0.5	60.73	32.9	11.2	0.3	37.5	0.0
41 42	n-Hexanoic ester iso-Hexanoic ester	0.5	60,73	24.7	20.9	0.5	29.0	0.4
42	2-Methyl butanoic ester	0.2	60, 73	24.9	14.6	1.1	30.0	0.3
	Isovaleric ester	0.2	74, 57 60, 43	29.5 20.8	11.9	1.4	12.6 10.4	0.0
	Isobutyric ester	0.5	43, 73	10.4	10.4	1.7	19.8	0.0
	2-Methylpentanoic ester	0.5	74, 43	6.5	6.0	0.2	35.4	0.7
	3-Methylpentanoic ester	0.5	60,41	19.8	16.0	0.9	5.8	0.0
48	4-Methylpentanoic ester	0.5	57, 74	15.5	11.5	1.0	14.5	0.4
49	Octanoic ester n-Valeric ester	0.2	60,73	30.0	19.0	0.3	22.5	0.0
	Propionic ester	0.5	60, 73 74, 45	27.8 19.3	15.6	1.2	12.6 14.1	0.5
52	2-Ethyl hexanoic ester	0.5	73, 88	7.7	2.4	1.0	49.2	0.1
	Nonanoic ester	0.5	60.73	23.2	17.8	0.7	13.8	0.0
	n-Butyl mercaptan	0.2	41, 56	24.1	19.8	1.2	40.0	0.3
	tert-Butyl mercaptan	0.2	41, 56	18.7	15.5	0.4	7.5	0.4
	Carbon disulfide Carbonyl sulfide	0.5	76, 44	5.8	12.3	0.1	28.3	0.0
	Diethyl disulfide	0.5	61,76 122,66	32.1 31.5	27.8	0.1	41.2	0.0
	Diethyl sulfide	0.2	75, 90	8.5	7.7	1.0	40.0	0.4
60	Dimethyl disulfide	0.5	94, 79	38.0	23.2	0.3	41.2	0.0
61		0.5	62	19.1	14.1	1.2	42.2	0.5
62		0.5	111,112	11.5	8.7	0.9	47.5	0.4
	Ethyl mercaptan Ethyl methyl sulfide	0.2	62, 29	9.2	5.8	0.4	63.7	0.0
	2-Ethylthiophene	0.5	61,76	3.9	5.8	0.0	24.5	0.4
	*Hydrogen sulfide	0.5	97,112 34,32	12.9 2751.4	10.2	1.7 6.5	4.9 111.4	0.2 8.1
	Isobutyl mercaptan	0.2	41, 43	15.3	11.2	1.8	34.9	1.0
68	Isopropyl mercaptan	0.2	43, 76	35.8	23.9	1.1	24.4	0.3
	Methyl mercaptan	0.2	47, 48	13.2	7.0	0.5	6.3	0.3
	3-Methyl thiophene	0.5	97, 98		1.0	1.7	7.8	1.1
	n-Propyl mercaptan Tetrahydrothiophene	0.2	76, 43		19.4	0.1	17.6	1.0
	Thiophene	0.5 0.5	60, 88 84, 58		20.7 0.5	0.8	17.0 8.0	0.0
	Sulfur dioxide	0.5	64, 48		3.1	1.1	6.8	0.2
	Odalog H2S ppm			3.2	0.1	0.0	0.1	0.0

Odorant profile of SCI & ST Stonecutters Island WWTW


- Inlet samples were the influent zone with high conc. of H₂S and other S-, ALD-, acid- and S-groups compounds.
- Dewater House samples have abundant S-, N-, Acid-, and ALDgroup compounds, but little H₂S.

Odorant profile of SCI & ST Shatin WWTW

- aa1, aa2 ambient air showed more S-, and ALD-group compounds.
- aa3, aa4 air showed the air was affected by influent water and sludge emission.
- Primary treatment influent and effluent was very difference, showing different air odor after the treatment.

Odorant profile of SCI & ST Dewater House (Cake Area)

- For "Cake" area in dewater House, the sludge have abundant S-, N-, Acid-, and ALD-group compounds and their levels changed in large scale, due to rain or wind.
- Extreme stimulating odor existed.
- However, little H₂S was detected.
- H₂S might have been degraded to other odorous compounds.
- Further investigation is needed.

General observation on point source and ambient air of SCI & ST WTWW

- Odorants levels from ambient air from SCI was higher than those from ST at most times of sampling.
- Higher odorants levels during Summer period and on sunshine day compared to Winter period and windy days.
- Dewater house, wastewater influent, anoxic zone, primary sedimentation points have higher odorants levels and strong stimulating odor in both SCI and ST.
- **Investigation on deodorizing units:** odor levels in inlet point were several times higher than in outlet unit. Deodorizing efficiency was significant.
- But during Nov. 21 and Dec. 2, 2014, the SCI deodorizing unit system (new) showed strange data, which was agreed with HKPC conclusion.
- If sludge is stored in a closed room (e.g., anoxic zone), the environment would be not suitable for people who work with sludge.

Interesting observation

- Dewater House ("Cake") area always had a very strong stimulating odor, which means that a large volatile chemicals exists in the air environment. But the odorant levels varied in large scale due to wind and rain effect.
- H_2S reading was very low (0.0 0.1ppm) in the open areas.
- Low H_2S level might be due to its evaluation and/or oxidation to degradation products.

Future perspectives – supporting research

"Direct Source Sampler" for Cake study

- In order to avoid weather impact on odor concentrations and to understand the original sludge character in dewater house, "Direct Source Sampler" (box) with two holes on top cover was designed.
- The sludge was placed in the box, odorants emission was collected; one hole for TDU-GC-MS analysis and another hole for Odalog meter H_2S reading.
- The TDU-GC-MS method was applied for identification of the odorants and potential degradation products.

Preliminary results on sludge "cake"

Sample	H2S (ppm from Odalog meter)
Open system	0.0 - 0.1
Box covered for 5-10 min	0.5 - 0.8
Box covered for 2-3 hrs	36.7 - 69.7

Box was then re-opened and stirred frequently, allowing VOCs be evaporated

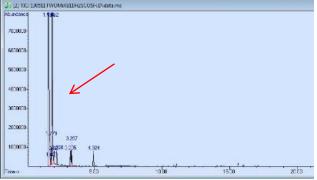
Open system	0.0 - 0.1
Box re-covered for 30 min	9.9 - 19.5
Box re-covered overnight	4.9 - 7.6 (?)

Discussions

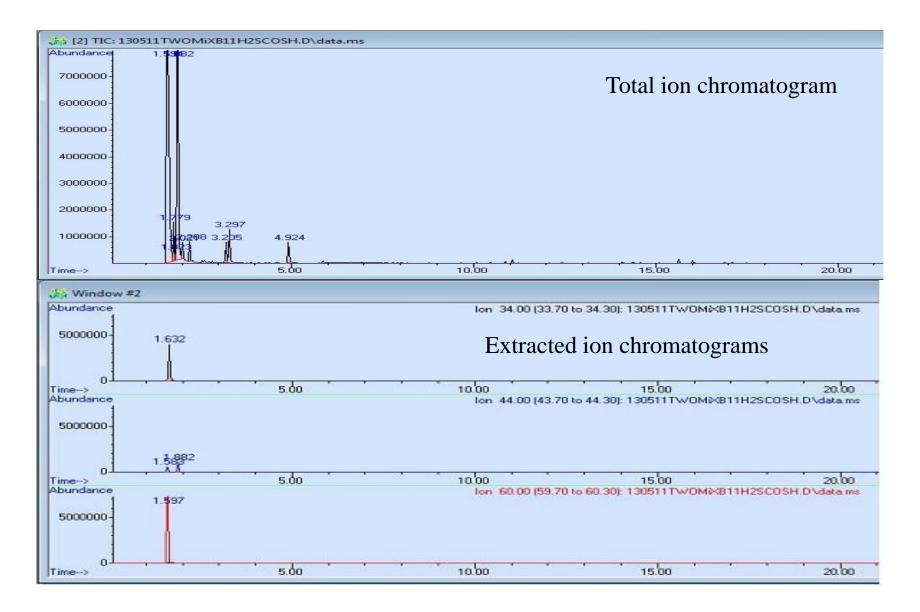
- When the sludge "cake" was placed into the plastic box in a closed system, H_2S level reached up to 69.7 ppm.
- When the box was opened, H_2S was gone, probably due to its evaluation and/or oxidation to degradation products.
- When the box was re-covered for 30 min, H_2S level increased from 0 to 9.9 -19.5 ppm, indicating that the sludge might have an abundant sulfate to generate H_2S .
- "Direct Source Sampler" might be served for pilot study on "cake" in dewater house under the special weather conditions.
- Further study is needed for (1) degradation products of H_2S under open and oxygen-rich conditions, and (2) the formation of H_2S in the covered "cake".
- GC-MS method might be applicable to support the study.

Conclusions

- Resin Sorbent-Thermal Desorption Unit coupled with GC-MS is suitable for odorant analysis.
- The volatile and semi-volatile odor components can be determined.
- Major odorants from WWTW were amines, organic acids (detected as esters), aldehyde, marcaptan and petroleum hydrocarbons.
- Hydrogen sulfide is a major odorant with high toxicity. Degradation and formation of H_2S in the wastewater treatment environment and in the sludge, needs to be further studied.
- Study on "Direct Source Sampler" (the "Frankie Box") should be continued.


Acknowledgement

- Dr. Jinshu Zheng, Mr. Jinchun Shi, Mr. C. H. Wong, Dr. Walton Xu, Miss Jiufeng Li
- Staffs of DSD and Wastewater Treatment Plants
- Dioxin Analysis Laboratory, HKBU
- State Key Lab. of Environmental and Biological Analysis (HKBU)
- DSD of Hong Kong SAR (DEMP11/05)



Challenge: hydrogen sulfide study

- H_2S was considered as the main odorant with strong badegg smell and high toxicity to human. Its toxicity can be as high as HCN and CO.
- H_2S was found to be converted to carbonyl sulfide (SCO羰 基硫) when reacting with O_2 and CO_2 .
- In TDU-GC-MS, CO_2 peak overlapped the SCO peak and H_2S peak, at retention time of 1.583-1.632min.
- Characteristic ions: H_2S at m/z 34, CO_2 at m/z 44 and SCO m/z 60.

Identification of H₂S from CO₂ and SCO

H₂S study summary

- When H₂S was direct injected into TDU-GC-MS, no degradation & conversation occurred.
- When using tube absorbing ~98% of H_2S converted to SCO
- Measurement of H_2S was performed by considering the adjustment with convention rate.
- The determination was confirmed with the analysis of SCO.
- The results were comparable with those from Odalog meter reading.