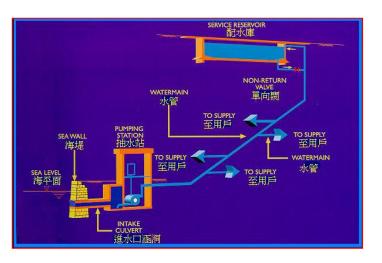


Characterization of sulfate-reducing granular sludge in the SANI® process

Tianwei Hao, Jinghai Luo, Hamish R Mackey, Hokwong Chui, Guanghao Chen

Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology

Outline of Presentation


- - 1. Background
 - 2. Characterization of SRB granular sludge aspects:
 - Physical
 - Chemical
 - > Biological
 - 3. Conclusions

Background (1):

^T Hong Kong is one of the most water scarce cities, only 125 m³/cap/year, far below International Water Scarcity Standard of 1000.

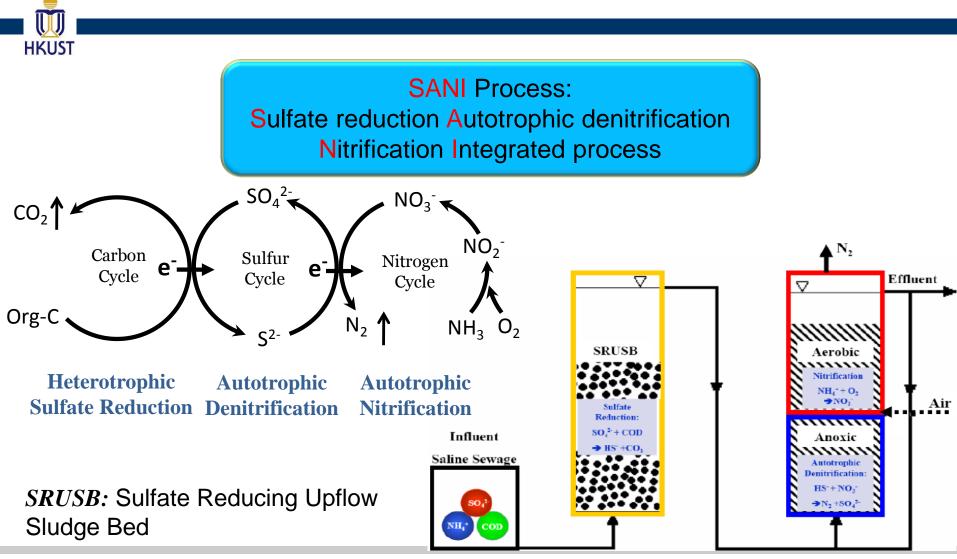
In 1958: Seawater toilet flushing was introduced in Hong Kong

Today: 80% of the population enjoys seawater toilet flushing

Seawater toilet flushing saves 750,000 m³/day of freshwater.

Background (2): Sludge production in Hong Kong

 Currently about 1,200 tons of dried sludge is generated from wastewater treatment works every day.

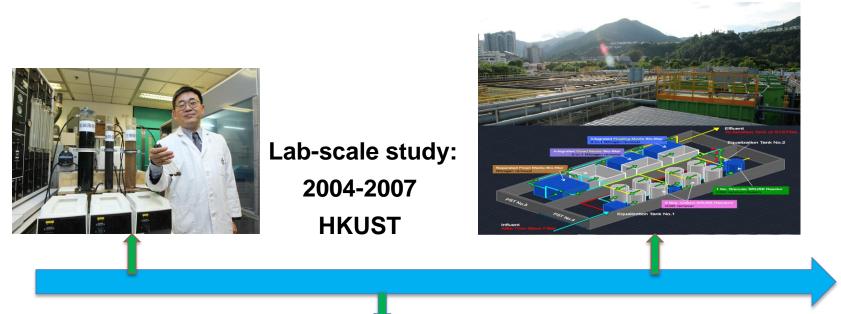

Landfill is the only current means for disposal of sewage sludge in Hong Kong (AECOM Asia, 2011)

Landfill capacity will be surpassed by 2018.

Does sludge incineration become the last resort for Hong Kong?

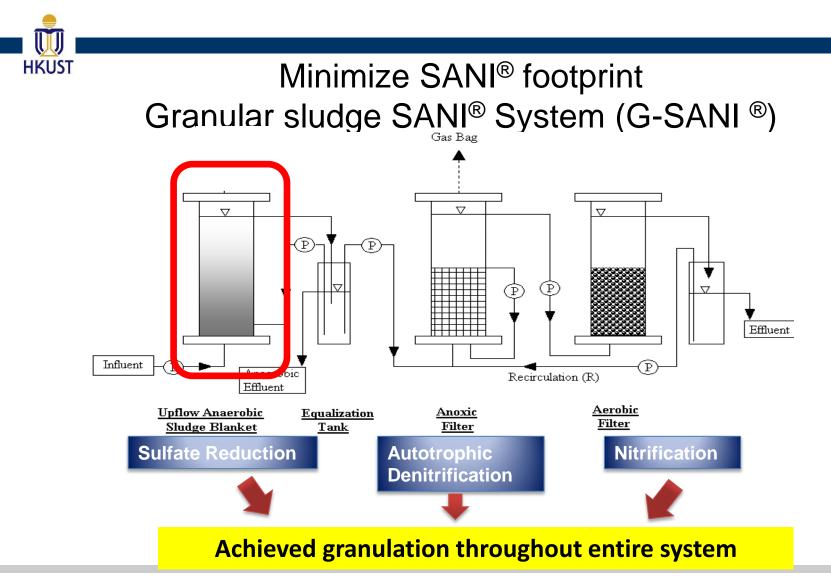
Possible solution: applying SANI process!

Background (3): Description of SANI[®] Process


Background (5): Description of SANI[®] Process

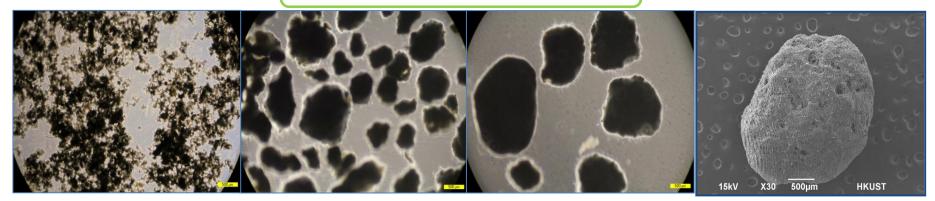
Stoich			
Biologi	Comparison of SANI process with Conventional Activated Sludge Process		
SAN2:7838			
Autotr		Save 75% space	
CBNR4gty			ge
No Nitetfin	Reduce 90% sludge	Reduce 35% energy consumption	RUSBs
$\begin{array}{c} 0.18 g N H_4^+ \\ \text{(Wang et al)} \end{array}$	production		gH_2O
	Reduce 36% GHG emissions		
		(Lu et al, 2011)	

Background (6): The milestones of the SANI process



Pilot-scale trial: 2007-2010 Tung Chung Sewage Pump Station (SPS)

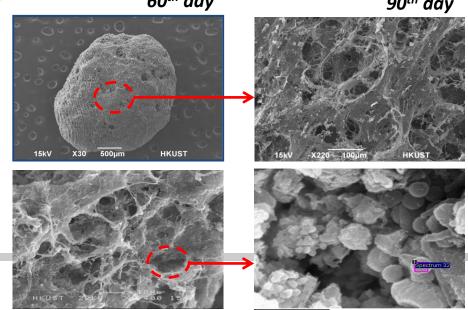
Large-scale demonstration: 2013-2015 Shatin STW


Objective of This Study

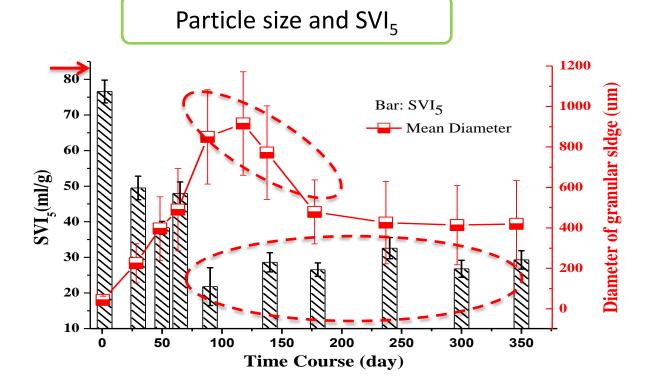
Physical Characterization

Morphology of granular sludge

Seeding sludge



90th day SEM image



Section

Surface and section of SRB granules look very porous.

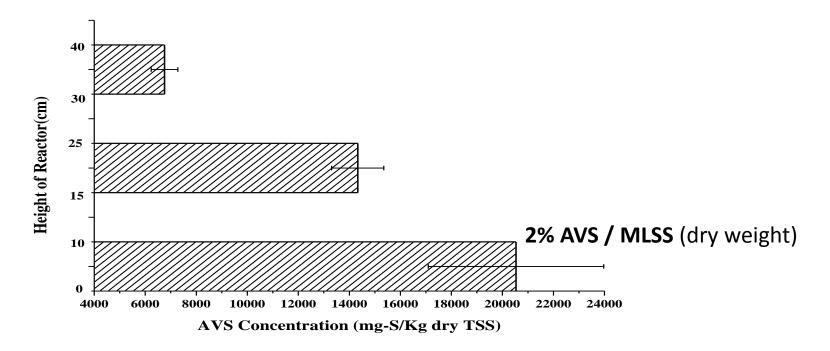
Physical Characterization

 ${\rm SVI}_{\rm 5}$ maintained at **about 30 ml/g**, VSS/MLSS ratio of 0.72 \pm 0.04

HKUST

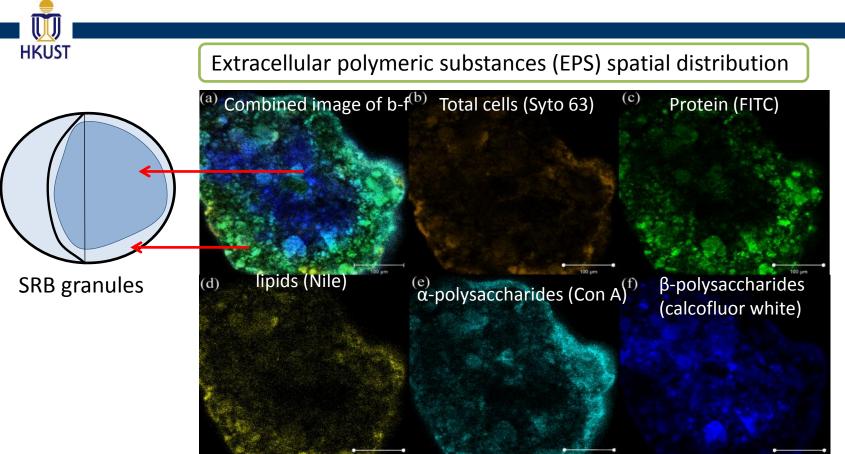
The mean granules **diameter** peaked at **916 μm** with SD of 256 after 4 months Then, decreased to a mean diameter of **420 μm**.

Physical Characterization


HKUST	Specific gravity
Anaerobic Granular Sludge Type	Specific Gravity
Starch factory waste-degrading granules	1.041
Alcohol factory waste-degrading granules	1.039
Pentachlorophenol (PCP)-degrading granul	es 1.020
Municipal wastewater-degrading granules	1.026
Granular methanogenic sludge granules	1.068-1.075
Sulfate Reducing (SRB) granules	1.068-1.074

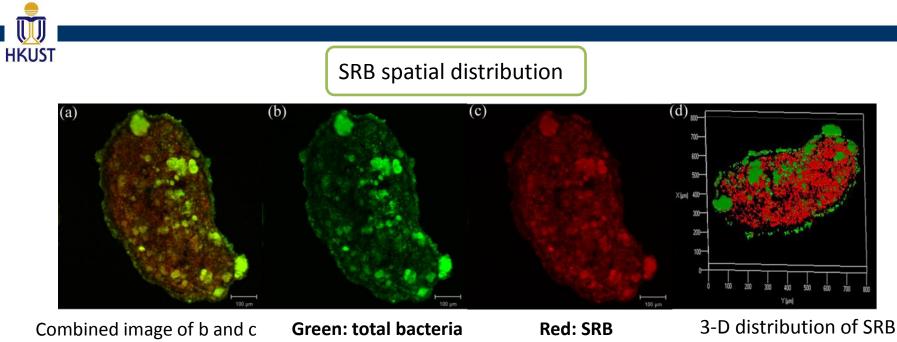
(Alphenaar et al., 1994; Wu et al., 1993; Fukuzaki et al., 1995)

Chemical Characterization


Metal sulfide accumulation: Acid Volatile Sulfide (AVS)

HKUST

10 times higher than marine sediment (640-2880 mg-S/kg dry TSS) (*Leonard et al., 1993*) **10 times** higher than the metal content in digested sludge (0.2%) (*Stylianou et al., 2007*) An **opportunity** to recover metals from sewage.


Chemical Characterization

β-polysaccharides at the core of the granules are hydrophilic Protein and amino acids (outer layer) are more hydrophobic than polysaccharides (*Cuthbertson, 2009; Wang, 2012*)

High hydrophobicity surface, and a hydrophilic internal structure.

Biological Characterization

amongst total bacteria

High SRB intensity throughout the granule sections; Thin outer shell mainly consisting of non-SRB

Distribution pattern suggests a possible collaboration niche between SRB and other bacteria.

Biological Characterization

Microbial community

Genus		Relative abundance of the sequences (%)		
	Inoculums	90 day	358 day	
Desulfobulbus	0.49%	18.1%	42.1%	
Desulfobacter	0%	13.6%	1%	
Desulfomicrobium	0.35%	5.6%	0%	
Desulfosarcina	0%	0.73%	0.45%	
Desulfovibrio	0%	0.6%	0%	
Desulfobacterium	0%	0.1%	0%	
Methylocystis	2%	0%	0%	
Trichococcus	0%	12.5%	12%	
Prosthecochloris	0%	0%	19%	

HKUST

Cluster distance	Seeding sludge	90-d granules	358-d granules
	Coverage	Coverage	Coverage
0.03	90%	94%	95%

SRB	Abundance (%)	Genera
Inoculum	0.84	2
90-day	38.6	6
358-day	44	3

Prosthecochloris: oxidize sulfide to sulfur globules (Kumar et al., 2009)

Conclusions

- SRB granular reactor can achieve organic loading rate of 11 kg COD/m³-day with 40 min HRT and 90% COD removal.
- Diameter of the granules was approximately 450 μm with SVI₅ ~ 30 ml/g, specific gravity 1.069-1.074.
- SANI process offers an **opportunity** to **recover metals** from sewage.
- The distribution patterns of proteins and polysaccharides assist the SRB granules in building a stable and firm external structure and an internal hydrophilic environment.
- SRB spatial distribution pattern suggests a possible collaboration niche between SRB and other bacteria.