COUPLING REAL-TIME URBAN FLOOD FORECASTING WITH POLLUTION ASSESSMENT

Dr Frédéric Jordan, e-dric.ch
Murielle Thomet, e-dric.ch
Tony Reverchon, ERM
Jüerg Elsener-Metz, Ernst Basler + Partner AG
Content

- Objectives of the new system
- Methodology and model description
- Results of the analysis
- Online real-time monitoring and forecasting system
Objectives of the new system

- **Morges - Switzerland**: fast growing urban and peri-urban region into a high quality environment (35’000 EH)
- **Main objective**: adapt the existing wastewater and stormwater drainage system

- Increasing the **knowledge** and understanding of the existing sewer system
- Identify **local hotspots**
- Estimate the capacity **reserve** of the system
- Define a maintenance and **adaptation strategy**
Methodology
Methodology

MODELLING

- System diagnosis
- Definition of adaptation strategy
- Limited uncertainties

FIELD OBSERVATIONS

- Validation of the adaptation strategy
- Optimization of the measures
- Keep knowledge growing

Update of the model into

REAL-TIME MONITORING AND FORECASTING
MODELLING CONCEPT

Data
- Weather gauging stations
 - Precipitation
 - Temperature

STORMWATER
- Rainfall-runoff model
 - Snow-melt model
 - Impervious coefficient

Concept
- Permeable area
 - Infiltration model (GR3)
 - Runoff from permeable areas
 - Runoff model (SWMM)

Impervious area
- Runoff model (SWMM)
- Runoff from impervious areas

Parameters
- Rate of system separation (EC)
- Rate of groundwater infiltration water (ECP)

Natural drainage system

WASTEWATER
- Waste water generation (EU)
 - EU/hab/day

Runoff-runoff model

Inhabitants equivalent (EH)
- Generation of unit discharge per EH
- Application of hourly and daily cycles

EU
- Treatment plant
MODELLING TOOL - RS2012 City

Natural drainage system

Urban region

Stormwater flowing into stormwater and natural drainage system

Wastewater flowing into stormwater and natural drainage system

Application

Tools

Projects

Engine

New project

Natural Basin A

Urban Basin I

Urban Basin X (100% Combined)

Chamber EU

Chamber 2 EU

Chamber 3 EU

Pipe 1 EU

Pipe 2 EU

STORM OVERFLOW SO1

Chamber 4 EU

Chamber 5 EU

TREATMENT PLANT

Releases to the natural drainage network

NATURAL BASIN B

RIVER E-LA

NATURAL BASIN C

RIVER C-LAKE

RIVER B-C

LAKE
Methodology

Modelling RS2012-City

- **Continuous simulation**
- **Field observations**

Input data
- P, T, EU*

Parameters
- Basins + pipe network

Model calibration
- Continuous simulation
- Field observations

Reference model
- \(E_H \)
- \(E_U \)
- Separation ratio

Current state of the system
- Treatment plant
- Networks
- Pumping stations and stormwater spillways

Scenarios of evolution
- Increase population
- Refactoring / extension networks

Control data
- Q, pollution indices

Analysis / diagnose
- Capacity reserve of the pipe networks
- Capacity of treatment plants
- Environmental impact
- Local failures of the network
- Global hydraulic drainage efficiency
- Global environmental efficiency

DATA

SIMULATION MODEL

SCENARIOS

INDICATORS
Results
Global calibration – Local validation

Clarmont: 139 inhab.
Yens: 1'050 inhab.
Bussy: 314 inhab.
Vaux: 135 inhab.
Vufflens: 806 inhab.
Lonay: 2'469 inhab.
Tolochenaz: 1'720 inhab.
Morges: 4'778 inhab.
Bussy: 314 inhab.
Clarmont: 139 inhab.
Vaux: 135 inhab.
Vufflens: 806 inhab.
Lonay: 2'469 inhab.
Tolochenaz: 1'720 inhab.
Morges: 4'778 inhab.

Parc: 12'020
(36.3% de STEP)

inhabitants

- STAR
- STAP 2008-2012
- Mesures 2006
Results

Global calibration – Treatment plant

Discharge in m3/s

Local validation – field campaigns

Ecublens Lonay City
Groundwater infiltration

Average at treatment plant STEP : 30.4%
Results

Filling rate of pipe network (rainfall event)

Map showing filling rate during rainfall with various color codes for different rate ranges.
Spilled wastewater

31’000 m3/y
1% of total inflow at treatment plant
Groundwater infiltration

Average at treatment plant STEP : 30.4%
Online platform
Example of situation

Yellow color indicates the spilling of waste water at the storm overflow.

Yellow color indicates that the flow will exceed the hydraulic capacity at the pipe chamber. Risk of inundation.

Red and large drop indicates that alert level 3 is reached at the treatment plant.
Example of situation

- Measurement
- Forecast (72 hours)
- Threshold value
Online platform

- Predict flood events in the **wastewater** as well as in the **stormwater** drainage systems
- Predict **inflows at the treatment plant**: optimization of energy consumption and maximization of treatment efficiency

✓ **Efficiency control** of the adaptation measures
✓ **Regular increase of the knowledge** of the system by a daily analysis of the model – reality of the basin
✓ **Planning of field campaigns and construction works** on the infrastructure
Thank you for your attention