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Historical highlights of the pre-
computer era 
 Egyptians learned to harness the waters of the NILE, 

measure the rise and fall of the river circa 3000 BC.   
 Descriptive hydrology was conceived by Plato and Aristotle 

circa 400 BC.   
 Romans constructed aqueducts without a complete 

knowledge of quantitative hydrology circa 300 BC. 
  A reasonably clear idea of the hydrological cycle was put 

forward by Vitruvius circa 27-17 BC,  
 Hydrological cycle in its present form is only after 

Leonardo  Da Vinci (1452 - 1519).   
 Perrault in 1674, and Mariotte in 1686 independently 

carried out experiments on runoff in France and concluded 
that the rainfall is sufficient to produce streamflow.   

 Until then, the belief has been that streamflow was the 
cause and rainfall its effect. 
 



Historical highlights of the pre-
computer era…. 
 Hydraulics, Hydrology and Fluid Mechanics have no crisp 

boundaries 
 Chezy’s equation (1769); Darcy’s equation (1856); Manning’s 

equation (1885) etc. are household names in hydrology too. 

 Da Vinci (15th century) – concept of hydrological cycle 

 Rational method (First Hydrological Model) (Mulvany, 
1850) 

 Regression models - empirical 

 Unit Hydrograph Theory (Sherman, 1932) 

 Infiltration theories (Green & Ampt, 1911; Horton, 1933; 
Philip, 1954) 

 Extreme value theory (Gumbel, 1941)  

 Kinematic wave theory (Lighthill & Whitham, 1955) 

 

 



Historical highlights of the pre-
computer era…. - Analog models 
(now outdated) 

 Analogy between water flow and electricity flow (late 
1940’s) 

Pressure-voltage 

Flow rate-current 

Friction-resistance 

Storage-capacitance 

 Analogy between potential flow and magnetic field 



Present (computer) era 
 Recent developments  

 Due to advances in computing capabilities 

 Due to advances in methodologies (non-
linearities, scaling  etc.) 

 Remote sensing, GIS and Web 

 Dilemma for hydrologists 

 Too many models and modelling techniques 

Conceptual models 

Physics-based models 

Data-driven models 

 Which one to choose? 

 



Highlights of the computer era 

 Conceptual models 

Tank model (Sugawara, 1956) 

Stanford watershed model (Crawford and Linsley, 1966),  

Xinanjiang model (Zhao, 1977, 1984; Zhao and Liu, 1995) 

HEC series (USACE, 1960’s onwards) 

Linear cascade model (Nash, 1957, 1958, 1959, 1960) 

Linear  channel (Dooge, 1959) 

Variable Infiltration Capacity (VIC) model (Wood et al, 
1992) 

 .... 

 .... 



Physics-based models 

 Governing equations 
Based on the laws of conservation of mass, momentum 

and energy (St.Venant’s equations) 

Assumptions and simplifications (Diffusion and 
kinematic wave approximations) 

 Initial and boundary conditions 

 Solution domain and discretization  

 Solution scheme – Numerical methods 
Finite difference methods 

Finite element methods 

Hybrid methods 

 Parameter identification, calibration and validation 



Physics-based models…. 
 Advantages 

 Potentially helps to understand the processes 
 

 Disadvantages 
 Resources demanding 

 

 Problems 
 Data resolution 
 Parameter estimation 
 Verification in a truly distributed sense is difficult if not impossible 

 

 Example: Système Hydrologique Europèen (SHE) Model) 
 Evapo-transpiration component,  
 Unsaturated zone flow component described by 1-D Richards' 

equation,  
  Saturated zone flow component described by 3-D Boussinesq 

equation, and  
 Overland flow (2-D) and channel flow (1-D) components described by 

the diffusion wave approximation of the St. Venant equations. 
 

 



Data Driven models  

 Regression models 
 Stochastic models – leading to time series analysis; Kalman 

filtering 
 Artificial Neural Networks 

Multi-layer perceptron, radial basis function networks, 
recurrent neural networks, product unit neural 
networks, wavelet neural networks etc. 

 Support Vector Machines –classification and regression 
 Genetic algorithms and Genetic Programming 
 Fuzzy Logic models 
 Neuro-fuzzy models 
 Dynamical systems approach type models – chaos 
 …….. 
 ……. 

 
 



Why data driven models? 

Data contain all the measurable information 
about the system 

Easier to formulate and interpret 

Only option when other approaches are 
infeasible 

No need for a priori understanding of the 
processes involved 

Particularly suited to theory weak data rich 
situations 

 



Recent advances in data driven 
modelling 

 Artificial Neural Networks 
Multi-layer perceptron, radial basis function networks, 

recurrent neural networks, product unit neural 
networks, wavelet neural networks etc. 

 Support Vector Machines –classification and regression 
 Genetic algorithms and Genetic Programming 
 Fuzzy Logic models 
 Neuro-fuzzy models 
 Dynamical systems approach type models – chaos 
 …….. 
 ……. 

 



Artificial Neural Network 



Structure of a Multi-layer 
perceptron (MLP) artificial neural 
network (ANN) 



Sigmoid activation function 



 
 
 
 
 
Stopping criterion: Cross 
validation 

Training sample

Validation sample

Early stopping point No. of epochs

Mean
squared

error

 

Fig. 7.6: Illustration of cross-validation 



Application: Surma River, 
Bangladesh 



 

 Fuzzy logic approach 

 Traditional binary (crispy) logic vs. fuzzy logic 

 Absolute truth vs. partial truth 

 The key idea in fuzzy systems is to allow a partial 
truth to prevail which can be numerically described 
by a membership function that takes values 
between 0 and 1.   

 Fuzzy logic enables embedding uncertain or 
imprecise reasoning in everyday life to computers 
which operate in exact deterministic ways 

 Translate imprecise linguistic information sets into 
computer usable numerical language.  

 

 



Structure of a fuzzy logic system 



Information flow in a fuzzy system 
 



Building a fuzzy system 

 Steps in building a fuzzy system 
 Selection of the relevant input and output variables, choice of 

the possible term sets for each linguistic variable,  

 Choice of the type of membership functions,  

 Fuzzification of the crisp input and output variables,  

 Derivation of the rule set,  

 Fuzzy inference, 

 Aggregation of the outcomes of the rules and inferences and 
de-fuzzification.   

 Choice of membership functions is rather subjective 
but is not due to randomness.   

 Output of the aggregation process is a single fuzzy set 
for each output variable.   



Crispy (binary) set 

 In a crispy set, the membership function is of the 
form 

 

 

 

 For example, consider a rainfall of 100 mm/h.  In a 
crisp system, the question 'Is the rainfall heavy?' 
has two possible answers: yes or no.  If 100 mm/h is 
the mathematical boundary between 'heavy' and 
'not heavy', the answer to any given rainfall 
intensity is unique, yes or no.  
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Fuzzy set 

 A fuzzy set A in X can be defined as a set of 
ordered pairs A expressed as 

 

 

 

 

 Linear variation of 

 rainfall from  

 0-100 mm/hr  

 

 



Linguistic variables 
 An object can be described in many ways using 

modifiers (adjectives and/or adverbs) to describe a 
characteristic of the object or the object itself.  Such 
descriptions that use natural languages convey 
imprecise meanings.  

 For example a person may be described as 'very tall', 
'tall', 'somewhat tall' or 'not tall' depending upon one's 
perception of 'tallness'.  The modifiers used describe 
the degree of tallness in a linguistic way.   

 For other variables, similar kind of linguistic variables 
can be assigned depending on the perception of its 
effect.   

 Each linguistic variable can be assigned a membership 
value which will indicate its degree of effectiveness.   

 Linking numerical values with the linguistic 
variables is subjective and problem specific.    
 





Sigmoid (logistic and tanh) 
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Fuzzy rules 

Fuzzy rules are based on common sense.   

Fuzzy rule base consists of rules that 
include all possible fuzzy relations 
between inputs and outputs.   

However it is to be noted that the number 
of rules increases exponentially with 
increasing number of inputs leading to 
what is known as the 'curse of 
dimensionality'.   

 



Fuzzy rules…. 
 Rules are of the form IF…. THEN ……(part before 

THEN is the predicate  (or antecedent) and the part 
after THEN is the consequent).  For example, 

 IF rainfall is high, THEN, runoff is high 

 Sometimes rules are combined with logical operators 
‘AND’, or, ‘OR’.   

 The activation of a rule is the deduction of the conclusion. 

 For example, 

 IF rainfall is high AND soil moisture is high THEN runoff 
is high 

 IF rainfall is high OR upstream discharge is high THEN 
runoff is high 

 



Fuzzy rule systems 

Two types of rule systems:  

Mamdani (Mamdani and Assilian, 1975) 
type - fuzzy rule is also expressed in 
linguistic form. 

Takagi-Sugeno-Kang (TSK) type (Takagi 
and Sugeno, 1974, 1985) - fuzzy rule is 
expressed as a mathematical function of 
the input variables which is more 
appropriate for neuro-fuzzy systems 

 



 
 Fuzzy inference system (FIS) 

 Maps a given input to a corresponding output using 
fuzzy logic 

 Combines the components such as membership 
functions, fuzzy logic operators and rules. 

 Four well known inference mechanisms in fuzzy logic 
systems:  

Mamdani,  

Takagi-Sugeno-Kang (TSK), 

Tsukamoto, and  

Larsen.   



Fuzzification of inputs 

 Inputs and outputs are in most cases crisp numbers within 
the applicable range (universe of discourse)  

 Prior to fuzzification, linguistic terms should be assigned 
to the crisp values of the variables within the universe of 
discourse.   

 The number of linguistic terms to use is problem specific 
and rather subjective and not necessarily unique.   

 The discretization should be sufficiently fine to describe 
the process variation adequately keeping the computer 
memory storage requirement as the limiting condition.   

 Overlapping of membership functions is essential for 
smooth mapping.   

 For example, to describe flow ranging from 0-50 m3/s, 
linguistic terms such as dry weather flow, low flow, normal 
flow, high flow, flood flow may be used and assigned to 
equivalent crisp flow as follows: 
 



Fuzzification of inputs…. 
 Dry weather flow 

 
 
 

 Low flow 
 
 
 
 

 Normal flow 
 
 
 
 
 

 High flow 
 
 
 
 

 Flood flow 
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Domain partitioning 

 The domain partition can be represented by the 5 
membership functions defined above.  

 The output from the fuzzification process is a fuzzy 
number in the interval (0,1) that represents the degree 
of membership of the input variable.    

 

 

 



Mamdani implication from antecedent 
to consequent – ‘min’ operator 
 For two rules R1 and R2 given below, the Mamdani implication is 
  
 R1: IF x is A1 AND y is B1, THEN z is C1 
 R2: IF x is A2 AND y is B2, THEN z is C2 
   (A, B and C are fuzzy numbers) 

 The firing levels (or, the degrees of fulfilment)  α1 and α2 for x0 
and y0,  are given as 

            

 
 The rule outputs respectively are 
  
           

 
 The overall output is obtained as  
  
    





Mamdani implication from antecedent 
to consequent – ‘product’ operator 





De-fuzzification 
 De-fuzzification is the last step in the fuzzy inference 

process since the final output of a fuzzy system has to be a 
crisp number.   

 The input to the de-fuzzification process is the output 
fuzzy set from the aggregation process and the output is a 
single number.   

 De-fuzzification is done according to the membership 
function of the output variable.  

 There are several methods of which the centroid method is 
perhaps the most widely used.  It returns the centre of area 
under the curve.   

 Other methods such as the bisector of area, middle of 
maximum (average of the maximum value of the output 
set), largest maximum and smallest of the maximum can 
also be used.   

 De-fuzzification causes some loss of information. 
 



Takagi-Sugeno-Kang (TSK) Fuzzy 
Inference System 
 For two rules R1 and R2, the TSK implication: 
  R1: IF x is A1 AND y is B1, THEN z1 is a1x +b1y + c1 

  R2: IF x is A2 AND y is B2, THEN z2 is a2x +b2y +c2  

 

• Firing levels: 
 

 

 Rule outputs: 

 

 

 

 Overall output:  
 

 

 

 

 

 





Antecedent → Consequent 



Applications 
 Many industrial applications (e.g. train braking 

system, washing machines, auto-focussing in cameras, 
air conditioners, photo copying machines etc.) 

 Hydrological applications include 

Water level prediction 

Rainfall-runoff modelling 

 Infiltration modelling 

River discharge prediction 

Hydrological time series modelling 

……. 

 

 

 



A typical result 



Performance indicators 



A typical result 



Performance indicators with 3 (top) 
and 5 (bottom) cluster centers 
 



Guiding principles and criteria for 
choosing a model 

 Should be useful to solve or understand a particular 
problem under  a given set conditions and 
constraints.   

 A reasonable balance between the costs and benefits; 
Many models and modelling techniques add only a 
marginal value at an unjustifiable cost 

 Resource-driven or needs-driven? 

 Simple models or complex models? 

 Whether the model is for a specific  purpose to solve 
a problem or for an academic purpose for better 
understanding of the system 

 Opinions are divided – whether it is the end result 
that matters or how it is obtained? 

 



Challenges in the choice of 
hydrologic models – Data issues 
 

 
 For simple hydrologic models, the basic input is the rainfall, 

which varies spatially and temporally.   A reasonable spatial and 
temporal resolution is necessary to ensure that the data are 
representative.  

 The second most important hydrologic variable for modelling is 
the discharge resulting from rainfall, which can be considered as 
an integrator of all catchment-scale processes.  

 Rating curve – determined under normal flow conditions and 
often extrapolated for high flows 

 There are other hydrologic processes, such as evaporation and 
evapo-transpiration, infiltration, interception, and depression 
storage, that contribute to the basin-scale hydrologic system, 
and their inclusion requires some approximations and 
assumptions while their exclusion results in over-simplification.  

 Another factor that contributes to the uncertainty is the noise 
that is inherently present in all types of measured data. 

 



Challenges in the choice of 
hydrologic models – Data issues.... 
 In addition to hydrologic data, geometric, topographic, geologic, 

and land use data are needed for distributed type of models.  

 On a local scale, such data can be found in limited situations. 
The resolutions vary and depend upon the region and the 
catchment.  

 On a global or regional scale, remotely-sensed topographic data 
are available, particularly from satellite observations. Their 
resolutions also vary, but the publicly available data sets do rarely 
have resolutions finer than 1 km x 1 km horizontally, and a few 
10’s of meters vertically.  

 The results of any distributed model that uses such coarse data 
will have inherent errors of the same order or higher, than those 
of the input topographic data. 

 



Challenges in the choice of hydrologic 
models : Modelling issues 

 Conceptual, or Physics based, or Data driven ? 
 Stochastic or deterministic?   

 Linear or non-linear? – Linear assumption makes 
subsequent analysis and application simple, but in many 
instances, it is far from reality.  Non-linear assumption 
makes the problem more realistic but at a cost. 

 Stationary or non-stationary? – In stochastic modelling, 
assumption of stationarity makes analysis and application 
simpler, but with human influence in the hydrological 
system, the stationarity  assumption no longer holds in 
many situations.  For, example, the influence of climate 
change. 

 



Challenges in the choice of hydrologic 
models : Modelling issues… 
 Data driven models are relatively simple to formulate 

and easy to implement.  Since data contain all the 
information about the system, their use is quite logical. 

 Physics-based models consider the catchment processes 
from a physics point of view, but their formulation, 
calibration and implementation are quite resource and 
expertise demanding.  So far, no fully physics-based 
model has been successfully applied to a catchment 
without making drastic assumptions and 
simplifications. 

 There are also conceptual semi-distributed models that 
attempt to lump system characteristics on a small scale. 



Challenges in the choice of hydrologic 
models : Scale issues 
 Governing equations 

 St.-Venant  equations for overland flow 

 Richard’s equation for soil water flow 

 Diffusion type equation based on Darcy’s law and 
continuity for groundwater flow 

 Horton, Philip, Green & Ampt etc. for infiltration. 

 Mass transfer, aerodynamic, or combination type 
equations for evaporation 

 Are the governing equations valid in the scale of 
typical distributed models? 

 

 



 
Challenges in the choice of 
hydrologic models – Parameters 
and their calibration issues 
 Physically identifiable and measurable parameters vs. optimized 

parameters 
 Spatially and temporally homogeneous or non-homogeneous? 
 Global and local optima - Popular global search methods include 

population-evolution-based search strategies, such as the 
Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1993) 
and Genetic Algorithm (GA) (Wang, 1991).  

 Single objective function vs. multi-objective function.   
 Based on the original SCE algorithm, recent studies have led to 

the development of the Shuffled Complex Evolution Metropolis 
(SCEM) and the Multi-Objective Shuffled Complex Evolution 
Metropolis (MOSCEM) algorithms (Vrugt et al., 2003a, 2003b).  

 Direct comparison of these methods would be helpful in 
selecting the most suitable calibration algorithm from the 
extensively used shuffled complex evolution family of 
algorithms. 



Challenges in the choice of hydrologic 
models : Parameters and their calibration 
issues 

 Parsimony 

 Optimized vs. trial and error adjusted 

 Objective function – single vs. multi 

 Local optimum vs. global optimum 

 No distributed model that accounts for catchment 
heterogeneities and spatially varying inputs has yet been 
calibrated using field measured data 

 Most “distributed models” which start with laws of physics 
end up as data driven ones calibrated using some 
optimization technique thereby defeating the very purpose 
of adopting such an approach 



Challenges in the choice of hydrologic 
models: Parameters and their 
calibration issues…. 

 Equi-finality (Ludwig von Bertalnffy, 1968) for multi-
parameter optimization 
 Same final result may be arrived at from different initial 

conditions and in different ways 
 Two models are said to be equi-final if they lead to 

equally acceptable results.  It is a key concept to assess 
how uncertain hydrological predictions are. 

 A state A (a set of target parameters) is said to be Pareto 
optimal if there is no other state B dominating the state 
A with respect to a set of objective functions.  

 A state A dominates a state B, if A is better than B in at 
least one objective function and not worse with respect 
to all other objective functions. 

 There is no unique set of parameter values, but rather a 
feasible parameter space from which a Pareto set of 
optimal solutions is sought 



Concluding remarks 

One should take note of the saying 
that "all models are wrong, but 
some are useful", and exercise 
careful judgment in choosing a 
model or a modelling approach for a 
specific purpose.  



Thank you  

for your attention! 


