

DSD Conference: Applying the Triple Bottom Line in San Francisco

November 13th, 2014

Agenda

- Introduction to San Francisco's Sewer System
 Improvement Program
- San Francisco Triple Bottom Line Model
- Questions / Discussion

AECOM Sustainable Economics Group

Built on the principles of understanding the entire costs and benefits of a given investment to provide a better understanding of how these investments will change our built, natural, and social environments.

SAN FRANCISCO SEWER SYSTEM

- + 1,000 miles of Sewers
- + 2 All-Weather Wastewater Treatment Plants
- + 1 Wet-Weather Wastewater Treatment Plant
- + 8 Transport/Storage Structures
- + 19 All Weather Pump Stations
- + 25,000 Catch Basins
- + 36 Combined Sewer Discharge (CSD) Structures
- + Green Infrastructure

Sewer System Improvement Program (SSIP)

- \$6.8Billion Program
- 15-year Program 30-year Implementation Schedule
- Includes entire system
 - Treatment plants
 - Collection system
 - MS4 separate areas

The Public Mandate

Sewer System Improvement Program 7 Public Workshops

Sewer System

San Francisco

Sewer System Improvement Program Report

2005-2010

2009-2010

June 2010

July 2010

Stakeholder Input

Sewer System Master Planning Effort

Digester
Task Force
18 months

SSIP Levels of Service Goals Endorsed & Resolution Adopted

Sewer System Improvement Goals

- Provide a Compliant, Reliable, Resilient, & Flexible System that can Respond to Catastrophic Events
- Integrate Green & Grey Infrastructure to Manage Stormwater
- Provide Benefits to Impacted Communities
- Modify the System to Adapt to Climate Change
- Achieve Economic & Environmental Sustainability
- Maintain Ratepayer Affordability

URBAN WATERSHED ASSESSMENT

Projects + Programs + Policies

Green and Grey Infrastructure

Education, Grants, and Incentives

Stormwater Design Guidelines

GREEN AND GREY TECHNOLOGIES

GREEN

GREY

Pump Stations

Outfall Retrofit/ Replacement

Tunnels

Transport/Storage Structures

Pipe Upsizing/ Replacement

Recap of SSIP Validation

Categories of SSIP Capital Program	Phase 1 (\$ Millions)	Phase 2 (\$ Millions)	Phase 3 (\$ Millions)	TOTAL
Treatment Plants	\$2,233	\$1,215	\$407	\$3,855
Collection System	\$354	\$1,928	\$476	\$2,758
City and Consultant Program Management	\$125	\$152	\$43	\$320
TOTAL SSIP	\$2,712	\$3,295	\$926	\$6,933

Increased Granularity

PLANNING Master **Validation** Confirms and Plan refines projects Identifies needs and potential projects Level of Service **Condition Assessment** Modeling Refined Cost Estimates

TBL Primary Objectives

- To inform and support the analytical process for developing alternatives by considering social and environmental components in the process alongside performance and economic considerations
- To provide decision-making support for SFPUC project leaders; and
- 3. To increase *project selection transparency and facilitate a reporting-out* of expected project benefits.

Triple Bottom Line Principles

4 Typical TBL Assessment Techniques

Financial Analysis (SROI)

- Pure cash-flow analysis over the project lifetime (Sustainable Return on Investment)
- ?: Is this option commercially viable? Which option has the lowest lifetime cost?

Benefit-Cost Analysis

- Economic valuation which tries to capture quantifiable costs and benefits
- Monetizes criteria; allows for direct comparison of environmental and social to economic criteria
- ?: Do alternative benefits outweigh the costs? How much should I invest to meet consumer demands?

Cost Effectiveness Analysis

- Non-financial benefits expressed in units, not monetary terms
- Similar to BCA, but not monetized
- ?: Which option offers the leas cost alternative for reducing X emissions?

Scoring and Ranking

- Used to compare costs that can't be monetized
- Allows for consideration of various stakeholders, government, community
- Limits false precision
- Simpler

Implementation Plan: Tools for Efficient Delivery

AECOM

TBL_Model v1-2.xlsm - Microsoft Excel

Add-Ins

MODEL CALIBRATION

TBL HOME

Acrobat

Premium Solver Platform

Triple Bottom Line (TBL) Assessment Model Environmental + Social + Financial Sustainability Version 1.0

TBL ANALYSIS **TBL SUMMARY ALTERNATIVES**

Introduction TBL Process Model Instructions

MODEL INPUTS

The TBL Assessment Model is a module within the Citywide Sewer System Improvement Program (SSIP). The purpose of a TBL assessment is to provide a decision-support platform that facilitates the selection of SSIP projects and project alternatives that generate the highest value in terms of environmental improvement, social-benefit, and economic gain relative to criterion established. The determination of 'value' is carried out through a system of measurement that has two main aspects - the first is a set of Indicators that are designed to measure certain attributes of value, and second, is a Rating System that applies a consistent set of rules that can normalize, interpret, classify, aggregate and represent the measured indicator values in order to make them useful for decision-making. While indicators are primarily designed for measuring and monitoring performance of a system component, the Rating System is primarily designed to aid multi-criteria decisionmaking (MCDM) – a foundation of the TBL process.

The TBL is essentially an Indicator-based Rating System that incorporates multi-criteria decision making.

The main components of a robust TBL module are:

- · A comprehensive list of indicators
- A collection of indicator measurement models and processes that utilize available data
- A scoring and representation model (Rating System) that makes sense of all the indicators and facilitates decision-making

Characteristics of a good TBL Rating System:

- Simple (easily understood but logically sound)
- Comprehensive (by topic/criteria and indicators)
- Consistent (across indicator types, project types)
- Structurally Unbiased between Indicators as a model (unless explicitly weighted)
- Computable/Measurable
- Scalable (expandable by number of indicators; can work at local, watershed, City scales)
- Aggregation capable (group indicators into indexes etc.)
- Visually Representable (in a compelling, easy to grasp way)

TBL follows a basic set of principles

TBL Output Example

TBL HOME MODEL INPUTS MODEL CALIBRATION TBL RESULTS ALTERNATIVES DATA ARCHIVE

TBL Project Results Project Results Comparison - Archive Result for Project Generate Report for Printing View Project Data Form

☑ Evaluate Financial Criterion Ratings based on cost-effectiveness

Ordinal ranking system limits impression of false precision

Have the option to show or hide those criteria not impacted

TBL Alternatives Evaluation (Scoring)

TBL Evaluation Criteria

Financial (LCA)	Environmental	Social				
Capital Costs	Climate	System Resilience				
Operations and Other* Costs	Habitat	Ratepayer Affordability				
	Water Use	Employment				
	Water Quality	Bicycle and Pedestrian Environment				
	Air Quality	Recreation / Open Space				
	Natural Resources	Cultural Resources				
		Odor				
	Noise					
	Land Use Adjacency					
	Mostly to address conditions at treatment plants	Construction Impacts				
	treatment plants	- Worker Safety				

^{*} Includes Operations & Maintenance, Replacement & Renewal, Decommissioning, Avoided Costs, and New Revenues

Triple Bottom Line (TBL) Community Benefits Assessment

Environmental + Social + Financial Sustainability

Sample Metrics / Outputs

LCA Components

TBL Folsom & 17th Street Example

17th and Folsom Street Alternative Analysis

17th and Folsom Street Alternative Analysis

17th and Folsom Street Alternative Analysis

Criteria Development

Example: System Resilience

- Sea level rise
- Flooding
- Redundancy
- Consequence of Failure

Governance Committees

TBL Model Interface

Triple Bottom Line (TBL) Assessment Model

Environmental + Social + Financial Sustainability

S8 Noise

TBL Output Example

Triple Bottom Line Model Objective: The TBL model is a decision support tool that transparently estimates the financial,

social, and environmental consequences of SSIP projects in order to optimize and articulate the community benefits of SSIP investments. Chinatown Green Street Retrofit (Spofford + Ross) **TBL Uses** ** Social Estimation: S1 System Resilience S2 Ratepayer Affordability **Project Selection** S1 F2 Bicycle & Pedestrian Environment \$-10K **S2 Alternatives Formation** ·Bike/Ped Enhancements: 600 Linear Ft. 84 Odors **S3** Recreation & Open Space Amenities Community SSIP Outreach Employment -Passive Open Space: 1,100 Sq. Ft. Track System Performance: **S5** Cultural Resources F1 \$-35K Naise Design Reference Estimated Labor: 0.5 FTE Construction Impacts **S6** Targets Achieved over life of project Environmental Climate Cultural Elements included **S7** Habitat in Design Water Use Water Quality **E**5 **E1** Air Quality E6 Natural Resource Inputs **E4** E2 \$\$ Financial ·Urban Habitat Added: 400 Sq. Ft. F1 Annualized Capital Costs F2 Annualized Other Costs Average Annual Contribution to CSD Volume Reduction: 50K gallons/year Significantly Positive

Note: Financial Criterion ratings are based on annualized costs NPV and select projects only

Positive Neutral Negative Significantly Negative

N/A Not Applicable

Questions

Alternative Triple Bottom Line Approaches

Summary of Non-monetary Benefit Scores

Criteria

Criteria

Criteria

Criteria Weight

Overall Benefit

Overall Benefit

Criteria Weight	9.1	16.7	1.5	9.1	12.1	7.6	4.5	7.6	3.0	13.6	15.2	Overall Benefit
		Scores								Score		
1-Existing Cogeneration Engines	10	7	2	5	5	10	8	7	8	10	3	69
2-New IC Cogeneration Engines	10	8	10	5	10	7	8	8	8	10	9	85
3A-Microturbines	10	8	8	8	9	3	9	8	8	6	5	72
3B-Flex-Fuel Turbines	10	8	0	6	6	3	9	8	8	0	3	55
5-Fuel Cells	10	8	7	10	7	4	5	10	8	2	9	73
6-Biomethane into NG Pipeline	10	9	3	5	9	5	10	10	2	6	10	80
7-Biomethane CNG Vehicle Fuel	10	9	5	5	2	5	10	10	2	6	10	72
7B-Onsite Biomethane CNG Vehicle												
Fuel	0	5	0	5	1	2	8	10	7	6	5	45
	•		•	•	•	•	•	•		•		

Figure 4-2 presents a graphical summary of the results for the technology alternatives. The MUA results showed that new IC engines are the most beneficial with the highest combined benefit score of 85 followed by biomethane for NG pipeline injection with an overall benefit score of 80.

Alternative Triple Bottom Line Approaches

