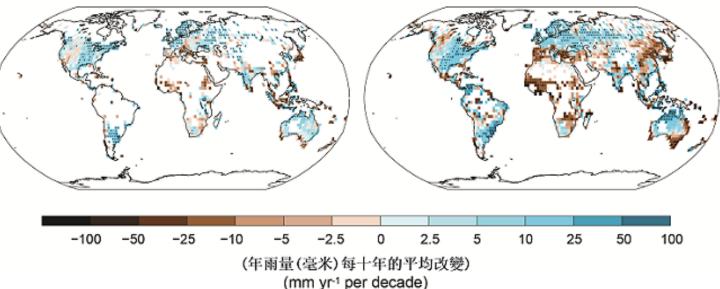


Rainfall projection for Hong Kong in the 21st century

M S Cheung, H S Chan & H W Tong Hong Kong Observatory 12 Nov 2014

Enhanced water cycle


- Higher sea surface temperature increases evaporation
- A warming atmosphere can hold more water vapour
- Annual precipitation increases in some places

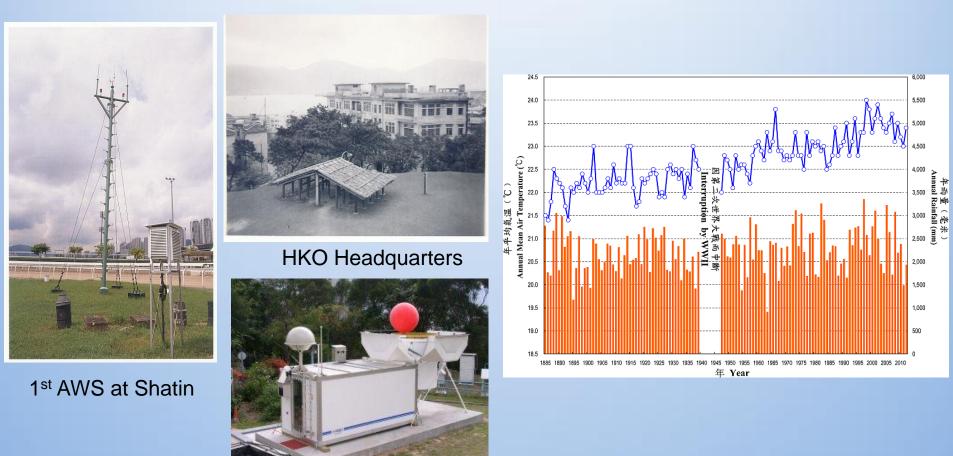
Source: Climate Commission, Australia

1951–2010

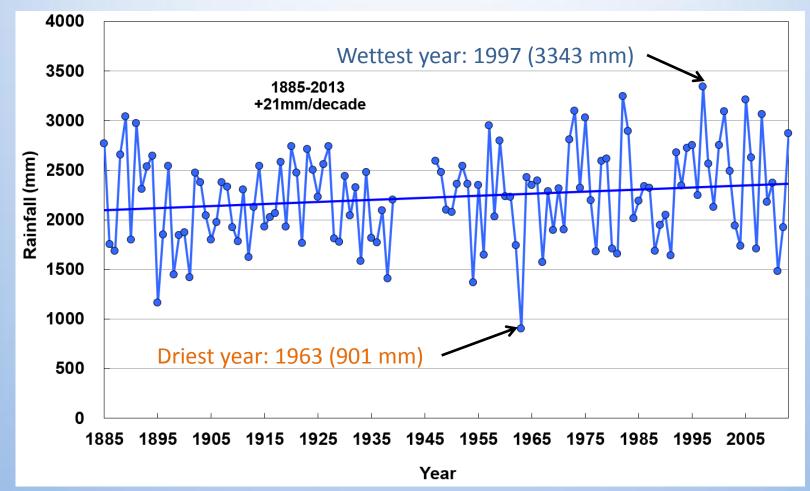
Source: IPCC AR5

Impact on Hong Kong

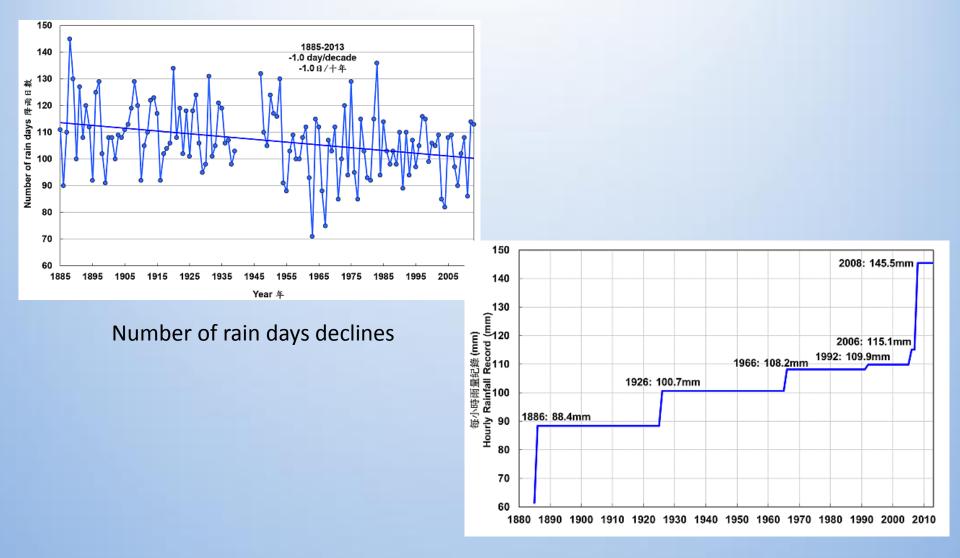
- Landslides
- Flooding
- Drought



Hong Kong Observatory

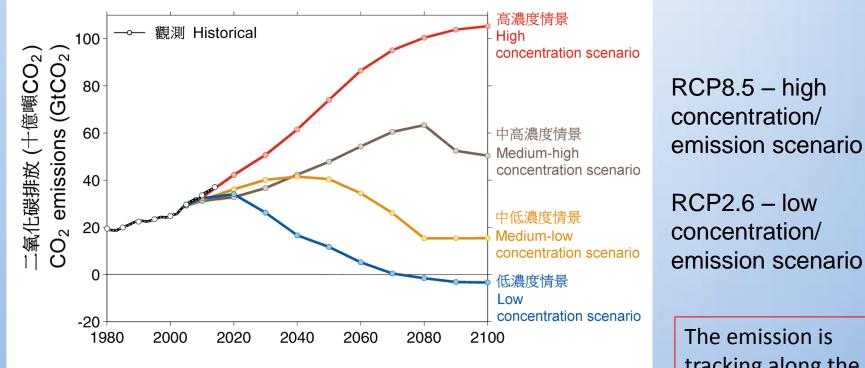

- Regular meteorological observations commenced in **1884**, including temperature, rainfall, pressure, sunshine duration, wind speed/direction, etc.
- 130 years of climate data serve as valuable resources for climate change studies and provide scientific basis to support the formulation of mitigation and adaptation measures of climate change.

ONG KONG OBSERVATORY


King's Park (since 1950s)

Annual rainfall recorded at Hong Kong Observatory (1885-2013)

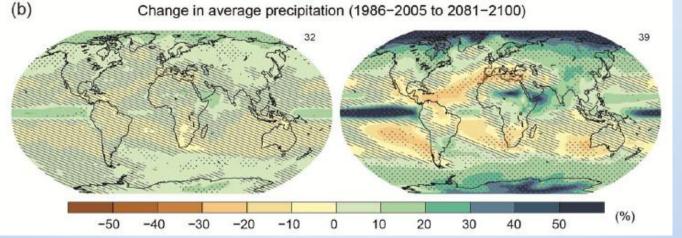
- A weak rising trend
- The annual rainfall trend is small compared to the year-to-year fluctuation


More frequent heavy rain

More frequent record breaking extreme rainfall

Greenhouse gas concentration scenarios

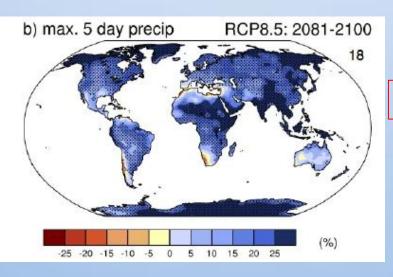
- 4 RCPs: RCP2.6, RCP4.5, RCP6.0, RCP8.5
- Indentified by the radiative forcing in year 2100 relative to 1750: 2.6 Wm⁻² for RCP2.6, 4.5 Wm⁻² for RCP4.5, etc.



Source: globalcarbonproject.org

The emission is tracking along the **RCP8.5**

Global projection of precipitation

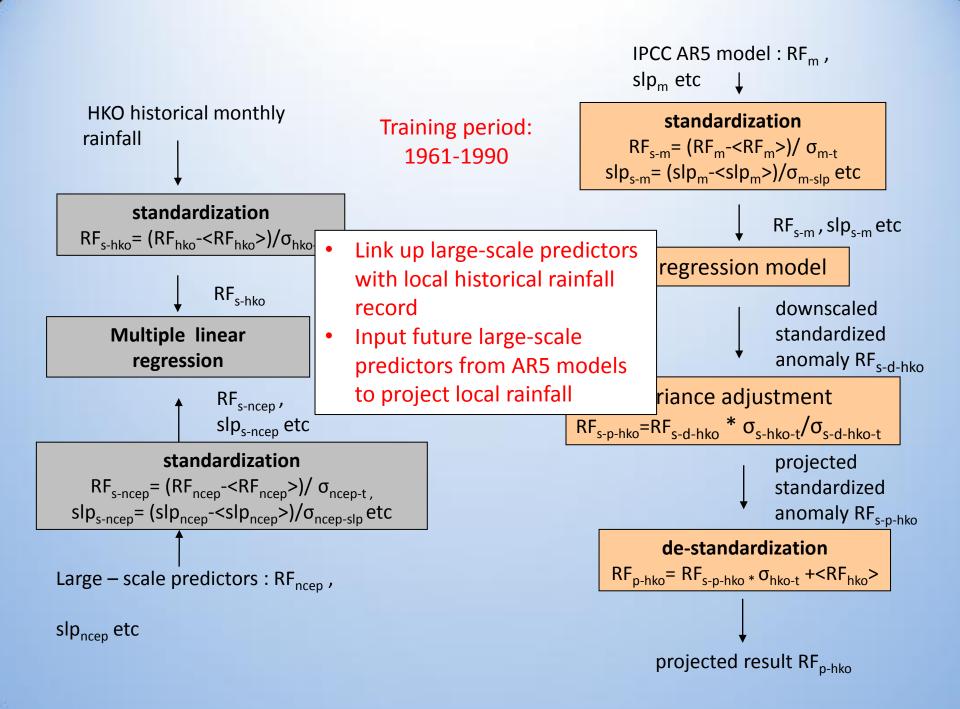


Source: IPCC AR5

Low greenhouse gas concentration scenario

High greenhouse gas concentration scenario

Precipitation generally increases over East Asia under high greenhouse gas scenario



More frequent extreme rainfall

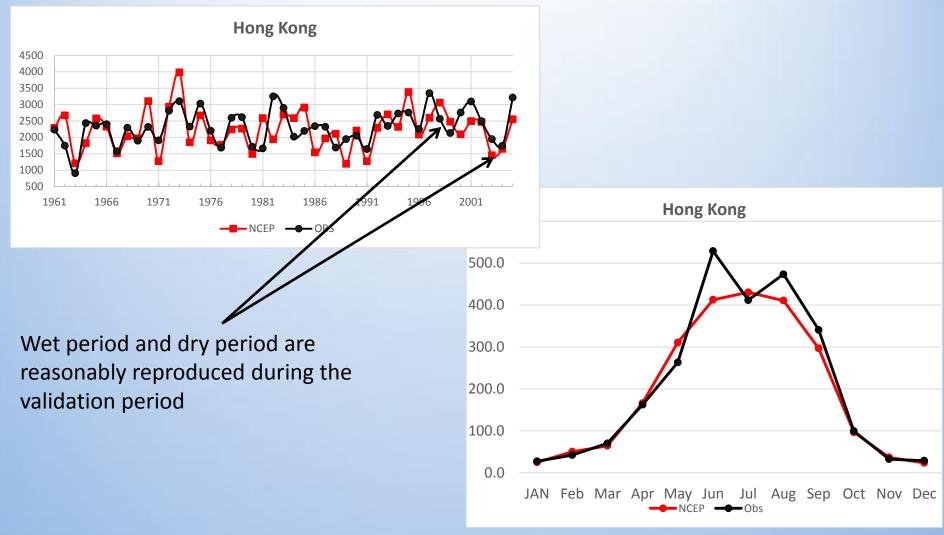
Source: IPCC AR5

Downscaling

- Horizontal resolution of global climate models are generally too coarse
- Typical resolution of a global climate model: 150-300 km.
- We need to "zoom in"
- Two approaches:
 - Dynamical downscaling using regional climate model
 - Statistical downscaling

Dataset

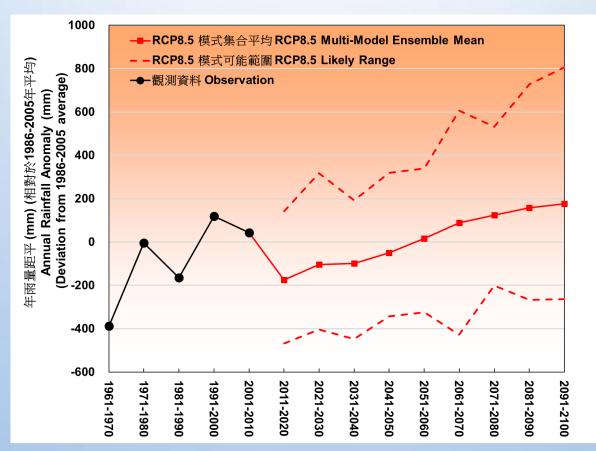
Dataset	Period	Purpose
HKO monthly rainfall	1961-1990 & 1991-2005	Building the stat. model & validation
NCEP 20 th century reanalysis dataset	1961-1990 & 1991-2005	Building the stat. model & validation
IPCC AR5 model data	2006-2100	Projection


Model	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5
ACCESS10	×	✓	×	✓
BCC-CSM1-1	✓	\checkmark	\checkmark	\checkmark
BNU-ESM	✓	\checkmark	×	\checkmark
CanESM2	\checkmark	\checkmark	×	\checkmark
CCSM4	\checkmark	\checkmark	\checkmark	\checkmark
CNRM-CM5	×	\checkmark	×	\checkmark
CSIRO-Mk36	×	\checkmark	\checkmark	\checkmark
GFDL-ESM2G	✓	\checkmark	\checkmark	\checkmark
GFDL-ESM2M	×	\checkmark	\checkmark	\checkmark
FGOAL_Sg2	✓	\checkmark	×	\checkmark
GISS-E2-H	\checkmark	\checkmark	\checkmark	\checkmark
GISS-E2-R	×	\checkmark	\checkmark	\checkmark
HadGEM2-AO	\checkmark	\checkmark	\checkmark	\checkmark
HadGEM2-CC	×	\checkmark	×	\checkmark
HadGEM2-ES	✓	\checkmark	\checkmark	\checkmark
INM-CM4	×	\checkmark	×	\checkmark
IPAL-CM5A-LR	✓	\checkmark	\checkmark	\checkmark
IPSL-CM5A-MR	✓	\checkmark	\checkmark	\checkmark
IPSL-CM5B-LR	×	\checkmark	×	\checkmark
MIROC5	✓	\checkmark	\checkmark	\checkmark
MIROC-ESM	✓	\checkmark	\checkmark	\checkmark
MIROC-ESM-CHEM	✓	\checkmark	\checkmark	\checkmark
MRI-CGCM3	✓	\checkmark	\checkmark	\checkmark
Nor-ESM-1M	✓	\checkmark	\checkmark	\checkmark
Nor-ESM1-ME	✓	\checkmark	\checkmark	\checkmark
Total	17	25	17	25

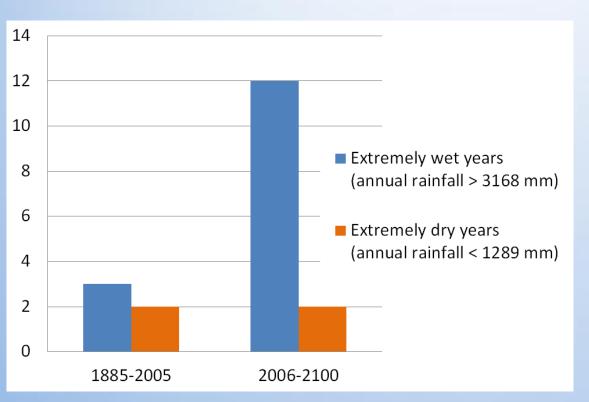
- 25 models for RCP4.5 and RCP8.5
- 17 models for RCP2.6 and RCP6.0
- All downloaded from pcmdi9.llnl.gov

Predictor sets

Predictor Set	Large-scale predictors (spatial average of 20-30N, 105- 120E)	
Set 1	Rainfall	
Set 2	Set 1 + Mean sea level pressure	
Set 3	Set 2+ 850 hPa relative humidity	Increasing complexity
Set 4	Set 3+ 850 hPa zonal wind and 850 hPa meridional wind	
Set 5	Set 4 + 500 hPa zonal wind and 500 hPa meridional wind	\checkmark


Validation (1991-2005)

Annual cycle in 1991-2005


Projections for 21st century under RCP8.5

- Relative to average of 1986-2005
- Likely range = 5th and 95th percentile of the spread of downscaled rainfall

- Annual rainfall is expected to increase towards the end of the this century
- Inter-model variation is still large

Number of extremely dry and extremely wet years

Criteria of extremely wet/dry years:

- Extremely dry year: Average rainfall in 1885-2005 minus 2 standard deviation (1289 mm)
- Extremely wet year: Average rainfall in 1885-2005 plus 2 standard deviation (3168 mm)

- Significant increase in the number of extremely wet years
- On the other hand, risk of drought cannot be totally ruled out

Source of uncertainty

- Future greenhouse gas emissions
- Ability of climate models to simulate physical processes
- Downscaling methodology
- Stability of the statistical downscaling relationship in future

Apply the same methodology to 5 southern China stations

 Macao, Guangzhou, Shanwei, Shantou and Heyuan

- For Guangzhou, Shanwei, Shantou and Heyuan, historical monthly data are available only from 1961
- Definition of extremely wet/dry year is slightly modified to be: ±2 s.d. of the average of 1961 - 2005 rainfall of the corresponding station

Projections for Hong Kong and 5 southern China stations

Percentage change of annual rainfall of 2081-2100 (relative to the average of 1986-2005)

• Increasing trend for RCP4.5, RCP6.0 and RCP8.5

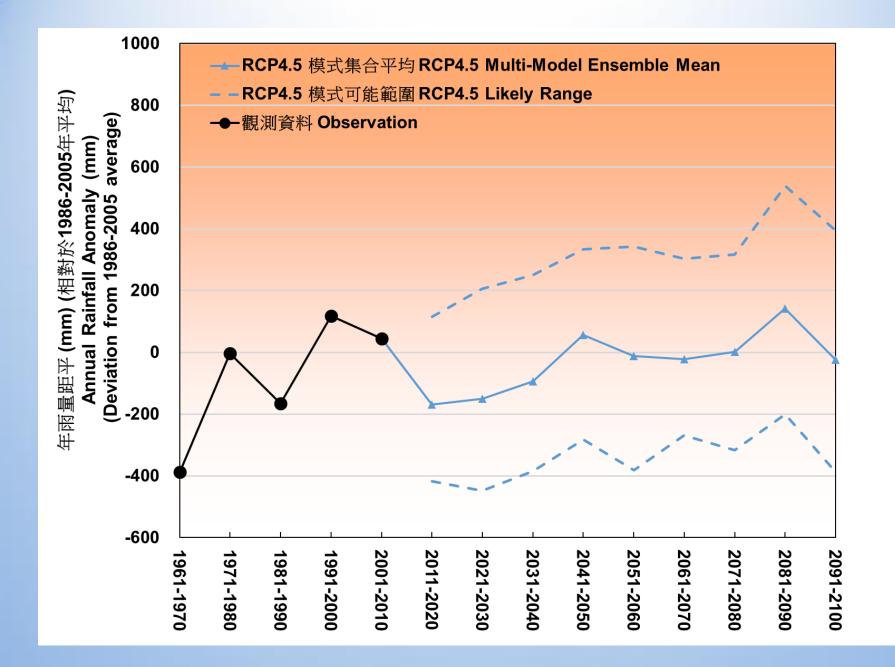
Number of extremely dry years and wet years

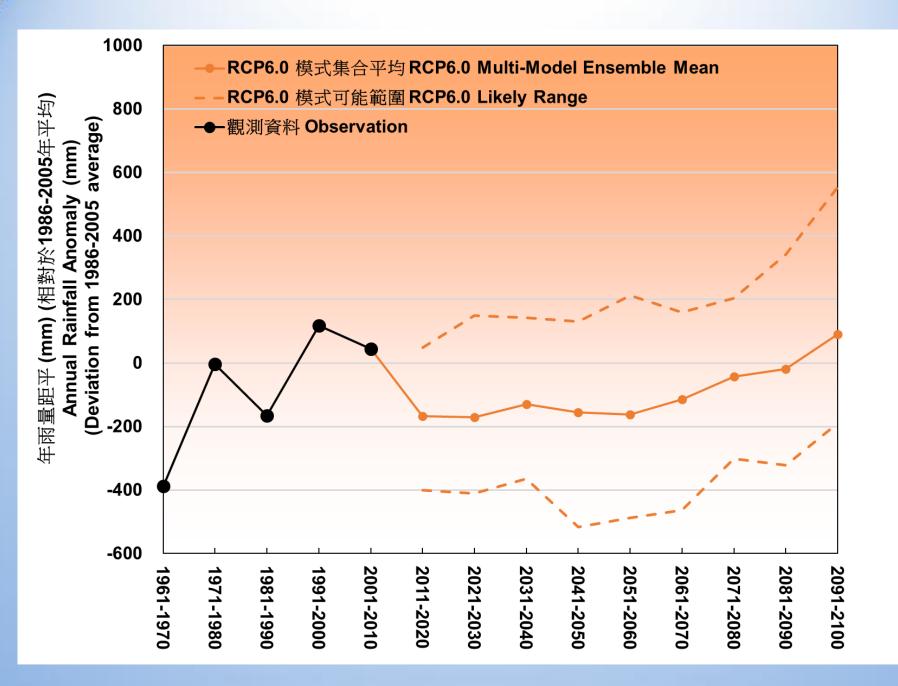
No. of Years		Масао		Guangzhou		Heyuan		Shantou		Shanwei	
		Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
(1961-2005 (45 years)	Observations	1	1	0	2	1	1	0	3	1	2
2006-2100 (95 years)	RCP2.6	1.4	5.6	2.8	4.7	2.2	7.8	3.0	6.5	1.9	5.0
	RCP4.5	1.2	7.3	2.4	6.6	2.2	10.4	2.6	9.0	1.6	7.2
	RCP6.0	1.5	6.6	3.2	5.7	2.7	8.8	3.6	7.4	2.2	6.5
	RCP8.5	1.4	9.8	3.0	8.7	2.2	13.0	2.9	11.4	1.9	9.7

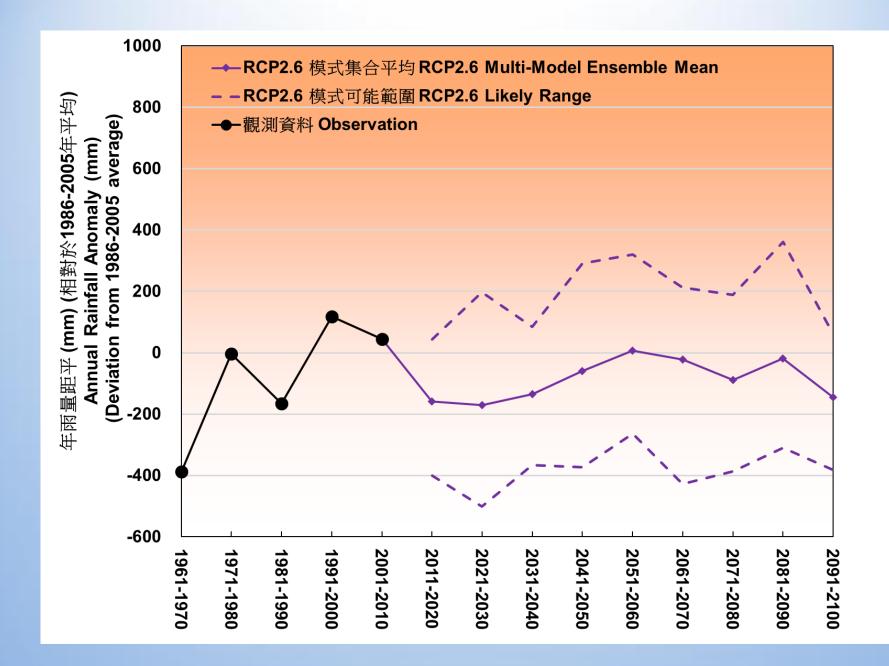
It is not a fair comparison as the projection period is much longer than the baseline period

No. of Years (every 45 yrs)		Масао		Guangzhou		Heyuan		Shantou		Shanwei	
		Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
1961-2005	Observations	1	1	0	2	1	1	0	3	1	2
	Historical	0.7	1.2	1.4	1.2	1.1	1.9	1.5	1.7	1.0	1.0
Projection period (x * 45/95)	RCP2.6	0.7	2.6	1.3	2.2	1.1	3.7	1.4	3.1	0.9	2.4
	RCP4.5	0.6	3.4	1.1	3.1	1.0	4.9	1.3	4.3	0.7	3.4
	RCP6.0	0.7	3.1	1.5	2.7	1.3	4.2	1.7	3.5	1.0	3.1
	RCP8.5	0.7	4.6	1.4	4.1	1.0	6.2	1.4	5.4	0.9	4.6

No. of extremely wet/dry years every 45 years.


Works in progress


- Using AR5 model daily data to project number of rain days, number of extreme rainfall days, etc
- Projections of drought index, e.g. standardized precipitation index (SPI)
- Comparison between other downscaling methods (e.g. dynamical downscaling)


Summary

- Under the high greenhouse gas concentration scenario (RCP8.5), the annual rainfall of Hong Kong would increase towards the end of this century.
- Number of extremely wet years would increase from 3 to 12.
- Number of extremely dry years would remain at 2. Risk of drought cannot be totally ruled out
- Large inter-model variations still exist, reflecting the uncertainty of the projections to some extent.
- Similar pattern could be found over other southern China stations.

